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Abstract

Braess’ paradox is a counter-intuitive phenomenon which can occur in congesting networks.
It refers to those cases where the introduction of a new link in the network results in the

total travel time on the network increasing.

The dissertation starts by introducing the traffic assignment problem and the concept of
equilibrium in traffic assignment. The concept of equilibrium is based on Wardrop’s first
principle that all travellers will attempt to minimize their own travel time regardless of the

effect on others.

A literature review includes details of a number of papers that have been published in-
vestigating theoretical aspects of the paradox. There is also a brief description of Game
Theory and the Nash Equilibrium. It has been shown that the equilibrium assignment is

an example of Nash Equilibrium.

The majority of work that has been published deals with networks where the delay functions
that are used to compute the travel times on the links of the network do not include explicit
representation of the capacity of the links. In this dissertation a network that is similar in
form to the one first presented by Braess was constructed with the difference being that the
well-known BPR function was used in the delay functions. This network was used to show
that a number of findings that had been presented previously using simpler functions also
applied to this network. It was shown that when it occurs, Braess’ paradox only occurs

over a range of values at relatively low levels of congestion.

Real-world networks were then investigated and it was found that similar results occurred
to those found in the simpler test networks that are often used in discussions of the para-
dox. Two methodologies of eliminating the paradox were investigated and the results are

presented.

Keywords: Wardrop, equilibrium assignment, Braess’ paradox, game theory, Nash equili-

brium, BPR functions, Braess’ paradox in real-world networks, eliminating the paradox.



Notation

In this dissertation the decimal point (.) is used as the separator between the unit part and
the decimal part of numbers. This is consistent with the usage in the majority of English

speaking countries, although it is not the official usage in South Africa.

Where a term that usually refers to the male gender (e.g. his) is used in this dissertation

it should be taken to be gender neutral, i.e. his or her.
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Chapter 1

INTRODUCTION

This dissertation describes an investigation into an apparent paradox that sometimes occurs
when additional capacity is added to a road network. This phenomenon was presented by
Braess [9] in 1968 and occurs when adding extra capacity to a network results in an increase
in the total travel time on the network. This is counter-intuitive, and is known as Braess’

paradox.

Braess used a very small network to illustrate the paradox and it could be considered a
contrived example. However, cases of it occurring on actual city street networks have been

reported.

Knodel [38] cited in Murchland [43] states that the effect could occur in reality as was
shown by a case in Stuttgart. Major road investments in the city centre, in the vicinity
of the Schlossplatz, failed to yield the benefits that had been expected. The benefits were
only obtained when a cross street, the lower part of Konigstrasse, was withdrawn from use
by traffic.

The New York Times [57] reports on a second case that could be a real-world example of
Braess’ Paradox. In 1990, Lucius J Riccio, New York City’s Transportation Commissioner
decided to close 42nd Street on Earth Day (22 April). According to the article, 42nd Street
is “as every New Yorker knows is always congested” To everyone’s surprise, no traffic jam
occurred in the vicinity of 42nd Street on Earth Day. Traffic flow actually improved when

42nd Street was closed.

This introduction continues with a brief description of the traffic assignment problem.
Descriptions of different assignment techniques that are used are also given. More detail
is provided on the user equilibrium assignment technique, which is the most commonly
used assignment technique. Braess’ paradox is then presented with the network that he
used. This is followed by a literature survey of references to Braess’ and other paradoxes
that occur in transportation networks. An analysis of real world occurrences of Braess’
paradox is provided. In this analysis an example where 186 new road sections were proposed

for a regional road network were tested for the occurrence of Braess’ paradox. When



considered individually a number of these proposals result in the occurrence of Braess’
paradox. Methods are derived to reduce the amount of computational effort required to
eliminate all the proposed sections of road that will result in Braess’ paradox. This will

result in a more cost efficient road construction programme for the future.

1.1 The Traffic Assignment Problem

1.1.1 Representation of the Transportation Network

A transportation network can be represented by a set of nodes and a set of links (usually
they are directed links) connecting the nodes. The links represent the roads in the network
and the nodes represent intersections and interchanges. The term “network” is used to

represent both the physical structure and its mathematical representation.

Links can also represent transit lines (bus and rail routes) and nodes can represent bus

stops, transfer stations, etc.

The area that is covered by the network is usually divided into traffic zones. Each traffic
zone is represented by a node known as the centroid. These centroids are the “source”
and “sink” nodes where traffic originates and to which traffic is destined. Centroids are

connected to the network by means of centroid connectors.

Once the set of centroids has been defined, the movement of traffic over a transportation
network can be expressed in terms of an origin-destination matrix. This matrix specifies the
flow between every origin centroid and every destination centroid in the network. Centroids

can be both origins and destinations.

The links have associated with them a travel impedance, which can include many factors
such as travel time, safety, cost of travel, etc. The major component of this impedance is
travel time, which is often used as the only measure of link impedance. There are three

reasons for using only travel time:

e Studies have indicated that it is the primary deterrent for flow,
e most other measures of travel impedance are highly correlated with travel time, and

e it is easier to measure than many of the other possible components of impedance.

The impedance experienced by many transportation systems is a function of the usage of
these systems. Due to congestion, the travel time on streets is an increasing function of
flow. Therefore, a performance function rather than a constant travel time measure should
be associated with each of the links of the network. The performance function relates the
travel time on each link to the flow on the link. A typical link performance function is

shown in Figure 1.1. (This section is based on parts of chapter 1 of Sheffi [51].)



Link
Travel
Time

Link Flow

Figure 1.1: Typical Link Performance Function
1.2 Equilibrium in Transportation Networks

The idea of equilibrium in the analysis of transportation networks arises from the depen-
dence of the link travel times on the link flows. Assuming that a number of motorists wish
to travel between a given origin and a given destination, which are connected by a number
of possible paths, how will the motorists be distributed among the possible paths? If all the
motorists were to use the same path (initially the shortest path in terms of travel time),
this path would become more congested. This would result in the travel time on this path
increasing. A point might be reached where this is no longer the shortest path in terms of
travel time. Some of the motorists would then divert to an alternative path that, however,

might also be congested.

The system will be in a state of equilibrium when no motorist will want to change from
his present path to an alternative path. This is known as the user equilibrium situation
where every motorist seeks to minimize his travel time. There is second situation where
some motorists travel for longer than the minimum time, but the total travel time of all
motorists on the network is minimized. This second situation is known as system optimal

situation.

In 1952 Wardrop [62] proposed two principles of route choice that would result in the above

two states of equilibrium. They were:

Def 2.1. User Equilibrium: The journey times in all routes used are equal and less than

those which would be experienced by a single vehicle on any unused route.
Def 2.2. System Optimal: The average journey time over all routes is a minimum.

These two principles of Wardrop correspond to the following two sets of circumstances:

e Drivers choose their routes independently in their own best interests in the light of

the traffic conditions resulting from the choice of others (user equilibrium).



e Drivers cooperate in their choice of routes so as to produce a pattern of traffic flows

giving the maximum benefit to the community (system optimal).

It is generally accepted that in practice Wardrop’s first principle is the more likely basis for

network equilibrium.

Although Wardrop is credited with the above two principles of equilibrium, similar ideas
had been expressed by others. Correa et al. [17] cite Kohl [39] as saying in 1841 that

travellers minimize their individual travel times.

Florian [28] cites Knight [37] as describing the following traffic pattern that he called equi-
librium in 1924:

“Suppose that between two points there are two highways, one of which is broad enough
to accommodate without crowding all the traffic which may care to use it, but it is poorly
graded and surfaced; while the other is a much better road, but narrow and quite limited
in capacity. If a large number of trucks operate between the two termini and are free to
choose either of the two routes, they will tend to distribute themselves between the roads
in such proportions that the cost per unit of transportation, or effective returns per unit
of investment, will be the same for every truck on both routes. As more trucks use the
narrower and better road, congestion develops, until at a certain point it becomes equally

profitable to use the broader but poorer highway.”

The problem of assigning or allocating all motorists to the various paths or routes is known
as the traffic assignment problem. The simplest form of assignment is known as an all-
or-nothing assignment where all trips are assigned to the shortest possible route without

taking the effects of congestion into account.

Different traffic assignment techniques are described in the following section.

1.3 Some Traffic Assignment Techniques

1.3.1 All-or-nothing assignment

This is the simplest form of traffic assignment. In this procedure, every origin-destination
(O-D) flow, between an origin node and a destination node, is assigned to all the links that
are on the minimum travel time path connecting the two nodes. All other paths connecting

the two nodes are not assigned any flow.

During this process, the link travel times are assumed to be fixed (not dependent on the

flow on them).

Many early transportation studies used the all-or-nothing traffic assignment procedure ba-
sed on empty network travel times. The travel times on the links after the flows have

been assigned to them will, in most cases, be different from the times on which the assign-



ment was based. Since this assignment method does not take into account the dependence

between flows and travel time, it, in effect, ignores the equilibrium problem.

1.3.2 Incremental assignment

This is a heuristic technique where a portion of the origin-destination matrix is assigned
to the network at each iteration using the all-or-nothing method. After each assignment,
the travel times on all links are recalculated taking the assigned flows into consideration,
before the next portion of the matrix is assigned. Sheffi [51] provides an example using the

network shown in Figure 1.2 to illustrate the method.

Link 1

t=10[1+0.15(%)"]
ty =20 [1+0.15 ()]
ty =25 [1+0.15 (%)"]
Total flow from O to D = 10 flow units

Figure 1.2: Network Example with Three Links and one O-D Pair

The algorithm for the incremental assignment is as follows (Sheffi, [51]):

Step 0: Preliminaries. Divide each origin-destination entry into N equal portions (i.e.
set ¢, = ¢rs/N). Set n =1 and 20 = 0, vV oa.

Step 1: Update. Set t? =t, (z71), V a.

a
Step 2: Incremental loading. Perform an all-or-nothing assignment based on {¢I'}, but
using only the trip rates ¢, for each O-D pair. This yields a flow pattern {w[}.

Step 3: Flow summation. Set 27 = 2z~ ! +w?, V a.

Step 4: Convergence test. If n = N, stop (the current set of link flows is the solution),

otherwise set n =n + 1 and go to step 1.

where:
t"™ = time on link a at iteration n

w]l = incremental loading on link a at iteration n



-

" = loading on link a after iteration n

x
grs = total flow from origin r to destination s

q;, = flow from r to s at iteration n

Table 1.1 shows the application of the incremental assignment algorithm to the network

shown in Figure 1.2 when four equal increments of 2.5 flow units are applied to the network.

Table 1.1: Incremental Assignment Algorithm Applied to the Network in Figure 1.2

Iteration | Algorithm Step Link 1 Link 2 Link 3

1 Update t =10 t5 =20 t =25
Incremental loading | wi = 2.5 wy = wi =0
Summation ri =25 T = zi =

2 Update t2 =14 t5 = 20 t3 =25
Incremental loading | w? = 2.5 w? =0 w3 =0
Summation 2 =5.0 3 =0 73 =

3 Update t{ = 69 3 = 20 3 =25
Incremental loading | w3 = 0 wi = 2.5 wi =0
Summation 3 =5.0 r3 =25 z3=0

4 Update t1 =69 t5=205] t3=25
Incremental loading | w} =0 wy = 2.5 wh =
Summation 1 =50 r3=5.0 r3=0
Travel time at end t] = 68.6 t5 =273 t3 =25.0

As shown in Table 1.1, the incremental assignment method also does not necessarily
converge or result in a set of flows that represent the user equilibrium flow pattern. The
two used travel paths (links 1 and 2) do not have equal travel times and the travel times

on these two links are higher than that on the unused path (link 3).

1.3.3 Capacity restraint assignment

This heuristic technique is also sometimes called the iterative assignment technique. This
method involves a number of all-or-nothing assignments in which the travel times resulting
from the previous assignment are used in the current iteration. This method does not
necessarily converge. To overcome this problem the algorithm is terminated after a given
number of iterations, N. The equilibrium flow pattern is then taken to be the average flow
for each link over the last four iterations. This method does not necessarily result in a true

equilibrium flow pattern.
The algorithm for the capacity restraint assignment method is as follows (Sheffi [51]):

Step 0: Initialization. Perform all-or-nothing assignment based on t) = t,(0), V a.

Obtain a set of link flows {z0}. Set iteration counter n = 1.
Step 1: Update. Set t? =t, (z71), V a.

a

Step 2: Network loading. Assign all trips to the network using all-or-nothing assignment

6



based on travel times {t{'}. This yields a set of link flows {z7}.

Step 3: Stopping rule. If n = N, go to step 4. Otherwise set n =n + 1 and go to step 1.

3
Step 4: Averaging. Set x, = iZl'(]lV_Z
=0

Va and stop. ({z}} are the final link flows.)

Table 1.2 shows the results of using this algorithm on the example shown in Figure 1.2.

Table 1.2: Capacity Restraint Algorithm Applied to the Network in Figure 1.2

Iteration | Algorithm Step Link 1 Link 2 Link 3
0 Initialization 9 =10 t9 =20 t9 =25
Y =10 9 =0 23=0

1 Update t = 947 t5 =20 th =25
Loading i =0 T3 =10 3 =0

2 Update t2 =10 t3 = 137 3 =25
Loading r? =10 r3=0 3=0

3 Update ] = 947 t3 = 20 t3 =25
Loading 3 =0 r3 =10 r3=0
Average x] =5.0 x5 =5.0 x3=0

T =68.6 th=2713| t5=25

As shown in Table 1.2, the capacity restraint method does not necessarily converge. In fact

in this case it “flip-flops” between links 1 and 2 and link 3 does not get loaded at all.

To remedy this situation, the algorithm can be modified as follows. Instead of using the
travel time obtained in the last iteration for the new loading, a combination of the last
two travel times obtained is used. This introduces a “smoothing” effect. The steps of
the modified capacity restraint algorithm (using weights of 0.75 and 0.25 for the averaging
process) are as follows (Sheffi, [51]):

Step 0: Initialization. Perform all-or-nothing assignment based on t? = ¢,(0),V a. Obtain

a set of link flows {20}. Set iteration counter n = 1.
Step 1: Update. Set 7' = t, (2771), Va.
Step 2: Smoothing. Set t" = 0.75t% "1 +0.257", V a.

Step 3: Network loading. Assign all trips to the network using all-or-nothing assignment
based on travel times {t{'}. This yields a set of link flows {z7}.

Step 4: Stopping rule. If n = N, go to step 5. Otherwise set n =n + 1 and go to step 1.

3
Step 5: Averaging. Set z; = 1 Zmiv_’ Va and stop. ({z}} are the final link flows.)
=0

The smoothing is accomplished by creating a temporary link-travel-time variable 7', which
is not used as the travel time for the next iteration (see step 1). Instead it is averaged

together with the travel time used in the last iteration, t"~1, to obtain the link travel time



for the current iteration, .

The application of this modified capacity restraint algorithm using the network shown in

Figure 1.2 is shown in Table 1.3.

Table 1.3: Modified Capacity Restraint Algorithm Applied to the Network in Figure 1.2

Iteration | Algorithm Step Link 1 Link 2 Link 3
0 Initialization ) =10 t9 =20 t9 =25
2y =10 =0 =0
1 Update T =9475| 4 =20 T4 =25
Smoothing t=2444 ] t1=20 th =25
Loading =0 rd =10 i =0
2 Update =10 4 =1372| 13=25
Smoothing t7=185.8 | t3=49.3 t3 =25
Loading 2 =0 3=0 73 =10
3 Update =10 5 =20 75 = 488
Smoothing t3=141.8 | 3 =420 t3 =140.7
Loading 73 = 73 =10 T3 =
4 Update =10 5 =1372| 74 =25
Smoothing t1=108.9 | 3 =065.8 ti=111.8
Loading =0 r3 =10 T3=0
5 Update =10 5 =1372| 15=25
Smoothing ) =84.2 t3 =83.6 3 =90.1
Loading zf = 3 =10 3 =0
6 Update =10 9 =1372| 7$=25
Smoothing t% = 65.6 t5=97.2 t§ =173.8
Loading 29 =10 25=0 8 =0
Average x] =25 x5 =5.0 x3 =25
tr =13.7 th =273 5 =126.8

1.3.4 Equilibrium assignment

As described in the following section it is possible to formulate the assignment problem as
a mathematical program, the solution of which provides the user equilibrium flow pattern
on the road network. This is the method that was used in the 1985 PWYV Transportation
Study (and subsequent studies).



1.4 The Assignment Problem as a Mathematical Program

Beckmann et al. [4], (cited by Sheffi [51]), developed the following transformation which
enabled the user equilibrium problem to be solved as a nonlinear programming problem.
The equilibrium assignment problem is to find the link flows, x, that will satisfy the user
equilibrium criterion when all the origin-destination entries, q, have been appropriately
assigned. This link-flow pattern can be obtained by solving the following mathematical
program (Sheffi, [51]):

min z(x) = Z/ ’ to(w)dw
o /0
subject to

Zf]:szqrs Vs
k

25 >0 Vk,rs
and =3 > > fit0
T S k

where
xq, = flowon arca; x = (...,xq,....)
te = travel time on arc a; t = (...,lg,....)
fi® = flow on path k connecting O-D pair r — s; £* = (..., f/*,....)
grs = trip rate between origin r and destination s

1 if link a is on path k between O-D pair rs
n5 = indicator variable; §7% } P P
’ ’ = 0 otherwise

In this formulation, the objective function is the sum of the integrals of the link performance
functions. This function does not have any intuitive economic or behavioural interpretation.
It should be viewed strictly as a mathematical construct that is utilized to solve equilibrium

problems.

The first set of constraints represents a set of flow conservation constraints. These constraints
state that the flow on all paths connecting each O-D pair has to equal the O-D trip rate.
This means that all O-D trips have to be assigned to the network. The second set of
constraints are non-negativity conditions and are required to ensure that the solution of

the problem will be physically meaningful.

The objective function above is formulated in terms of link flows while the flow conservation
constraints are expressed in terms of path flows. The third set of constraints are definitional

incidence relationships which bring the network structure into the formulation.
It has been proved that this converges to a unique solution (see Sheffi, [51], pp. 63-69).

Sheffi [51] provides the following simple example showing the solution of an equilibrium



assignment on a two-link network as shown in Figure 1.3.

Link 2

(a) Two-link network

5
Travel
Time

4

1 2 3 4

g Flow
(b) The performance functions and the equilibrium solution

Figure 1.3: Equilibrium Example

The network shown in Figure 1.3 has two paths (which are also links), leading from the

origin, O, to the destination, D. The volume-delay curves for the two links are given by:
t1h =2+
to =1+ 229

The O-D flow, g, is 5 units of flow, that is,
r1+x2=2>5

The equilibrium condition for this example can be expressed as

t1 <tgifaxy >0and ty >tgif 29 >0
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In this example it can be verified by inspection that both paths will be used at equilibrium
and that the last equation can therefore be written more simply (given that x; > 0 and

x2 > 0) as
t1 =12

The equilibrium problem then, is to solve four equations (the two volume-delay curves, the
flow conservation condition (z1 + z2 = 5), and the user-equilibrium condition (¢; = t2), in

four unknowns: x1, x2, t1, and t2. The solution to this set of equations is
z1 = 3 flow units
r9 = 2 flow units
t1 = t9 = 5 time units

When the problem is formulated as a minimization program, the result is the following:
min z(x) = [ (24 w)dw + [ (1 4 2w)dw

subject to

r1+x0=2>5
T, 9 > 0

To set the problem up as a simple one-dimensional unconstrained minimization,
x9 = 5 — x1 can be substituted into the objective function and into the remaining (non-

negativity) constraints to get the problem
min z(x) = [71(2 4+ w)dw + 77 (1 + 2w)dw
subject to
z1=0and 5—2x1 =0

To solve this program, the constraints can be relaxed and the objective function can be
minimized as in an unconstrained program. If the solution satisfies the constraints, it is
valid for the constrained program as well. Carrying out the integration and collecting

similar terms, the objective function becomes

z(x1) = 1.522 — 971 + 30

dz(z1)

T = 0. This solution satisfies the

two constraints (z; = 0 and 5 —x; = 0) and is therefore a minimum of the constrained pro-

This function attains its minimum at x] = 3, where

gram as well. The original flow conservation constraint guarantees that =5 = 2 and indeed,
the solution of the mathematical program is identical to the solution of the equilibrium
equations. (Sheffi, [51])

As shown above, the flow pattern that minimizes the user-equilibrium equivalent program is,
a user-equilibrium solution. This program includes a convex (non-linear) objective function

and a linear constraint set. The convex combinations method (Frank-Wolfe) method is

11



a suitable method to solve this problem. Using this method, a series of all-or-nothing
assignments are combined with the results from the previous step until a stopping criterion
is reached (see Sheffi, [51], pp. 117 -119). The choice of an appropriate stopping criterion

is discussed in Chapter 5 of this document.

The following algorithm describes the process to find a user equilibrium flow pattern using
the Frank-Wolfe method:

Step 0: Initialization. Perform an all-or-nothing assignment based on t, = t,(0), a. This

yields {zl}. Set iteration counter n = 1.

Step 1: Update. Set t7! =t, (2), VY a.

a

Step 2: Direction finding. Perform an all-or-nothing assignment based on {¢!'}. This yields

a set of (auxiliary) flows {y”}.

Step 3: Line search. Find a,, that solves

zg+a(yg —g)
min Z / to(w)dw
a Y0

0<a<1

Step 4: Move. Set 27! = 27 + a,, (y? — 27), VY a.

a

Step 5: Convergence test. If a convergence criterion is met, stop (the current solution,

n+1
a

2T, is the set of equilibrium link flows); otherwise set n = n + 1 and go to step 1.

The issue of an appropriate convergence criterion will be discussed in Chapter 4.

The result of applying the Frank-Wolfe (convex combinations) algorithm to the three link

network shown in Figure 1.2 is shown in Table 1.4.

The results in Table 1.4 show that that the convergence towards equilibrium is much better
than those of the heuristic methods shown earlier. After five iterations the flows are close to
equilibrium with the travel times being almost equal. As shown in Table 1.4, flow is taken
away from the congested paths and assigned to less congested paths during each iteration.
This process equalizes the travel times among all the paths and moves the system towards
equilibrium. The marginal contribution of each successive iteration to the reduction in the

value of the objective function decreases with each iteration. (Sheffi, [51])

1.5 Braess’ Paradox

In 1968 Braess [9], [10] presented an example of an equilibrium assignment problem that
produces an apparently paradoxical result. In this example, the addition of a new link
to the network results in an increase in the total travel time on the network, instead of
the decrease that would be intuitively expected. This phenomenon has become known as

Braess’ Paradox and is discussed below.

Figure 1.4 shows a simple network including one O-D pair that is connected by four links and

12



Table 1.4: Frank-Wolfe Algorithm Applied to the Network in Figure 1.2

Iteration | Algorithm Link 1 Link 2 Link 3 Objective | Step
Step Function | Size
0 Initialization | tJ = 10.0 t9=200| t3=250
29 =10.00 | 29 =0.00| 23 =0.00
1 Update t=9475 | t1=200| ti=250| 1975.00
Direction yi =0 ys =10 yi=0 0.596
Move 73 =4.04 r3=596| 23=0
2 Update t2 = 35.0 t5=350] t5=25.0 197.00
Direction ¥ =0 Y3 = y3 =10 0.161
Move r$ = 3.39 3 =500 | 23 =161
3 Update t =223 t3=273| 3 =253 189.98
Direction y3 =10 y3 =0 ys = 0.035
Move rf = 3.62 r3 =483 | z3=1.55
4 Update t1 =26.1 t5=263| t3=253 189.44
Direction Yt = ys = y3 = 10 0.020
Move 29 = 3.54 r3 =473 | 23 =172
5 Update ) =24.8 t5 =258 | t3=254 189.33
Direction yP =10 Y5 = y3 =0 0.007
Move 2§ = 3.59 r§=470| 2§ =171
Update t% =25.6 t5=257| t§=254 189.33

two paths. The figure shows the two paths (numbered 1 and 2) and the link performance
functions for the four links. Assume that six units of flow travel between O and D (ie q=6).
The user equilibrium flow pattern for this network can be solved by inspection (due to the
travel time symmetry of the two paths). It is obvious that half of the flow would use each

path and that the solution would be:
f1 = fo =3 flow units
or, in terms of link flows,
r1 = X9 = 3 = 14 = 3 flow units.
The associated link travel times are:
t1 = 53,ty = 53,t3 = 30, ¢4 = 30 time units
and the path times are
c1 = c2 = 83 time units, satisfying the user equilibrium criterion.
The total travel time on the network is 498 (flow-time) units.

Figure 1.5 shows the network expanded to include a new link connecting the two interme-
diate nodes. The figure shows this added (fifth) link, the performance function for this link,
and the new path (number 3) resulting from the addition of the link.

The old UE flow pattern is no longer an equili