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Abstract

Braess’ paradox is a counter-intuitive phenomenon which can occur in congesting networks.

It refers to those cases where the introduction of a new link in the network results in the

total travel time on the network increasing.

The dissertation starts by introducing the traffic assignment problem and the concept of

equilibrium in traffic assignment. The concept of equilibrium is based on Wardrop’s first

principle that all travellers will attempt to minimize their own travel time regardless of the

effect on others.

A literature review includes details of a number of papers that have been published in-

vestigating theoretical aspects of the paradox. There is also a brief description of Game

Theory and the Nash Equilibrium. It has been shown that the equilibrium assignment is

an example of Nash Equilibrium.

The majority of work that has been published deals with networks where the delay functions

that are used to compute the travel times on the links of the network do not include explicit

representation of the capacity of the links. In this dissertation a network that is similar in

form to the one first presented by Braess was constructed with the difference being that the

well-known BPR function was used in the delay functions. This network was used to show

that a number of findings that had been presented previously using simpler functions also

applied to this network. It was shown that when it occurs, Braess’ paradox only occurs

over a range of values at relatively low levels of congestion.

Real-world networks were then investigated and it was found that similar results occurred

to those found in the simpler test networks that are often used in discussions of the para-

dox. Two methodologies of eliminating the paradox were investigated and the results are

presented.

Keywords: Wardrop, equilibrium assignment, Braess’ paradox, game theory, Nash equili-

brium, BPR functions, Braess’ paradox in real-world networks, eliminating the paradox.
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Notation

In this dissertation the decimal point (.) is used as the separator between the unit part and

the decimal part of numbers. This is consistent with the usage in the majority of English

speaking countries, although it is not the official usage in South Africa.

Where a term that usually refers to the male gender (e.g. his) is used in this dissertation

it should be taken to be gender neutral, i.e. his or her.
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Chapter 1

INTRODUCTION

This dissertation describes an investigation into an apparent paradox that sometimes occurs

when additional capacity is added to a road network. This phenomenon was presented by

Braess [9] in 1968 and occurs when adding extra capacity to a network results in an increase

in the total travel time on the network. This is counter-intuitive, and is known as Braess’

paradox.

Braess used a very small network to illustrate the paradox and it could be considered a

contrived example. However, cases of it occurring on actual city street networks have been

reported.

Knödel [38] cited in Murchland [43] states that the effect could occur in reality as was

shown by a case in Stuttgart. Major road investments in the city centre, in the vicinity

of the Schlossplatz, failed to yield the benefits that had been expected. The benefits were

only obtained when a cross street, the lower part of Königstrasse, was withdrawn from use

by traffic.

The New York Times [57] reports on a second case that could be a real-world example of

Braess’ Paradox. In 1990, Lucius J Riccio, New York City’s Transportation Commissioner

decided to close 42nd Street on Earth Day (22 April). According to the article, 42nd Street

is “as every New Yorker knows is always congested” To everyone’s surprise, no traffic jam

occurred in the vicinity of 42nd Street on Earth Day. Traffic flow actually improved when

42nd Street was closed.

This introduction continues with a brief description of the traffic assignment problem.

Descriptions of different assignment techniques that are used are also given. More detail

is provided on the user equilibrium assignment technique, which is the most commonly

used assignment technique. Braess’ paradox is then presented with the network that he

used. This is followed by a literature survey of references to Braess’ and other paradoxes

that occur in transportation networks. An analysis of real world occurrences of Braess’

paradox is provided. In this analysis an example where 186 new road sections were proposed

for a regional road network were tested for the occurrence of Braess’ paradox. When
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considered individually a number of these proposals result in the occurrence of Braess’

paradox. Methods are derived to reduce the amount of computational effort required to

eliminate all the proposed sections of road that will result in Braess’ paradox. This will

result in a more cost efficient road construction programme for the future.

1.1 The Traffic Assignment Problem

1.1.1 Representation of the Transportation Network

A transportation network can be represented by a set of nodes and a set of links (usually

they are directed links) connecting the nodes. The links represent the roads in the network

and the nodes represent intersections and interchanges. The term “network” is used to

represent both the physical structure and its mathematical representation.

Links can also represent transit lines (bus and rail routes) and nodes can represent bus

stops, transfer stations, etc.

The area that is covered by the network is usually divided into traffic zones. Each traffic

zone is represented by a node known as the centroid. These centroids are the “source”

and “sink” nodes where traffic originates and to which traffic is destined. Centroids are

connected to the network by means of centroid connectors.

Once the set of centroids has been defined, the movement of traffic over a transportation

network can be expressed in terms of an origin-destination matrix. This matrix specifies the

flow between every origin centroid and every destination centroid in the network. Centroids

can be both origins and destinations.

The links have associated with them a travel impedance, which can include many factors

such as travel time, safety, cost of travel, etc. The major component of this impedance is

travel time, which is often used as the only measure of link impedance. There are three

reasons for using only travel time:

• Studies have indicated that it is the primary deterrent for flow,

• most other measures of travel impedance are highly correlated with travel time, and

• it is easier to measure than many of the other possible components of impedance.

The impedance experienced by many transportation systems is a function of the usage of

these systems. Due to congestion, the travel time on streets is an increasing function of

flow. Therefore, a performance function rather than a constant travel time measure should

be associated with each of the links of the network. The performance function relates the

travel time on each link to the flow on the link. A typical link performance function is

shown in Figure 1.1. (This section is based on parts of chapter 1 of Sheffi [51].)

2
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Figure 1.1: Typical Link Performance Function

1.2 Equilibrium in Transportation Networks

The idea of equilibrium in the analysis of transportation networks arises from the depen-

dence of the link travel times on the link flows. Assuming that a number of motorists wish

to travel between a given origin and a given destination, which are connected by a number

of possible paths, how will the motorists be distributed among the possible paths? If all the

motorists were to use the same path (initially the shortest path in terms of travel time),

this path would become more congested. This would result in the travel time on this path

increasing. A point might be reached where this is no longer the shortest path in terms of

travel time. Some of the motorists would then divert to an alternative path that, however,

might also be congested.

The system will be in a state of equilibrium when no motorist will want to change from

his present path to an alternative path. This is known as the user equilibrium situation

where every motorist seeks to minimize his travel time. There is second situation where

some motorists travel for longer than the minimum time, but the total travel time of all

motorists on the network is minimized. This second situation is known as system optimal

situation.

In 1952 Wardrop [62] proposed two principles of route choice that would result in the above

two states of equilibrium. They were:

Def 2.1. User Equilibrium: The journey times in all routes used are equal and less than

those which would be experienced by a single vehicle on any unused route.

Def 2.2. System Optimal: The average journey time over all routes is a minimum.

These two principles of Wardrop correspond to the following two sets of circumstances:

• Drivers choose their routes independently in their own best interests in the light of

the traffic conditions resulting from the choice of others (user equilibrium).

3



• Drivers cooperate in their choice of routes so as to produce a pattern of traffic flows

giving the maximum benefit to the community (system optimal).

It is generally accepted that in practice Wardrop’s first principle is the more likely basis for

network equilibrium.

Although Wardrop is credited with the above two principles of equilibrium, similar ideas

had been expressed by others. Correa et al. [17] cite Kohl [39] as saying in 1841 that

travellers minimize their individual travel times.

Florian [28] cites Knight [37] as describing the following traffic pattern that he called equi-

librium in 1924:

“Suppose that between two points there are two highways, one of which is broad enough

to accommodate without crowding all the traffic which may care to use it, but it is poorly

graded and surfaced; while the other is a much better road, but narrow and quite limited

in capacity. If a large number of trucks operate between the two termini and are free to

choose either of the two routes, they will tend to distribute themselves between the roads

in such proportions that the cost per unit of transportation, or effective returns per unit

of investment, will be the same for every truck on both routes. As more trucks use the

narrower and better road, congestion develops, until at a certain point it becomes equally

profitable to use the broader but poorer highway.”

The problem of assigning or allocating all motorists to the various paths or routes is known

as the traffic assignment problem. The simplest form of assignment is known as an all-

or-nothing assignment where all trips are assigned to the shortest possible route without

taking the effects of congestion into account.

Different traffic assignment techniques are described in the following section.

1.3 Some Traffic Assignment Techniques

1.3.1 All-or-nothing assignment

This is the simplest form of traffic assignment. In this procedure, every origin-destination

(O-D) flow, between an origin node and a destination node, is assigned to all the links that

are on the minimum travel time path connecting the two nodes. All other paths connecting

the two nodes are not assigned any flow.

During this process, the link travel times are assumed to be fixed (not dependent on the

flow on them).

Many early transportation studies used the all-or-nothing traffic assignment procedure ba-

sed on empty network travel times. The travel times on the links after the flows have

been assigned to them will, in most cases, be different from the times on which the assign-
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ment was based. Since this assignment method does not take into account the dependence

between flows and travel time, it, in effect, ignores the equilibrium problem.

1.3.2 Incremental assignment

This is a heuristic technique where a portion of the origin-destination matrix is assigned

to the network at each iteration using the all-or-nothing method. After each assignment,

the travel times on all links are recalculated taking the assigned flows into consideration,

before the next portion of the matrix is assigned. Sheffi [51] provides an example using the

network shown in Figure 1.2 to illustrate the method.

O D

Link 1

Link 2

Link 3

t1 = 10
[

1 + 0.15
(

x1

2

)4
]

t2 = 20
[

1 + 0.15
(

x2

4

)4
]

t3 = 25
[

1 + 0.15
(

x3

3

)4
]

Total flow from O to D = 10 flow units

Figure 1.2: Network Example with Three Links and one O-D Pair

The algorithm for the incremental assignment is as follows (Sheffi, [51]):

Step 0: Preliminaries. Divide each origin-destination entry into N equal portions (i.e.

set qn
rs = qrs/N). Set n = 1 and x0

a = 0, ∀ a.

Step 1: Update. Set tna = ta
(

xn−1
a

)

, ∀ a.

Step 2: Incremental loading. Perform an all-or-nothing assignment based on {tna}, but

using only the trip rates qn
rs for each O-D pair. This yields a flow pattern {wn

a}.

Step 3: Flow summation. Set xn
a = xn−1

a + wn
a , ∀ a.

Step 4: Convergence test. If n = N , stop (the current set of link flows is the solution),

otherwise set n = n + 1 and go to step 1.

where:

tna = time on link a at iteration n

wn
a = incremental loading on link a at iteration n
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xn
a = loading on link a after iteration n

qrs = total flow from origin r to destination s

qn
rs = flow from r to s at iteration n

Table 1.1 shows the application of the incremental assignment algorithm to the network

shown in Figure 1.2 when four equal increments of 2.5 flow units are applied to the network.

Table 1.1: Incremental Assignment Algorithm Applied to the Network in Figure 1.2

Iteration Algorithm Step Link 1 Link 2 Link 3

1 Update t11 = 10 t12 = 20 t13 = 25
Incremental loading w1

1 = 2.5 w1
2 = 0 w1

3 = 0
Summation x1

1 = 2.5 x1
2 = 0 x1

3 = 0

2 Update t21 = 14 t22 = 20 t23 = 25
Incremental loading w2

1 = 2.5 w2
2 = 0 w2

3 = 0
Summation x2

1 = 5.0 x2
2 = 0 x2

3 = 0

3 Update t31 = 69 t32 = 20 t33 = 25
Incremental loading w3

1 = 0 w3
2 = 2.5 w3

3 = 0
Summation x3

1 = 5.0 x3
2 = 2.5 x3

3 = 0

4 Update t41 = 69 t42 = 20.5 t43 = 25
Incremental loading w4

1 = 0 w4
2 = 2.5 w4

3 = 0
Summation x4

1 = 5.0 x4
2 = 5.0 x4

3 = 0

Travel time at end t∗1 = 68.6 t∗2 = 27.3 t∗3 = 25.0

As shown in Table 1.1, the incremental assignment method also does not necessarily

converge or result in a set of flows that represent the user equilibrium flow pattern. The

two used travel paths (links 1 and 2) do not have equal travel times and the travel times

on these two links are higher than that on the unused path (link 3).

1.3.3 Capacity restraint assignment

This heuristic technique is also sometimes called the iterative assignment technique. This

method involves a number of all-or-nothing assignments in which the travel times resulting

from the previous assignment are used in the current iteration. This method does not

necessarily converge. To overcome this problem the algorithm is terminated after a given

number of iterations, N. The equilibrium flow pattern is then taken to be the average flow

for each link over the last four iterations. This method does not necessarily result in a true

equilibrium flow pattern.

The algorithm for the capacity restraint assignment method is as follows (Sheffi [51]):

Step 0: Initialization. Perform all-or-nothing assignment based on t0a = ta(0), ∀ a.

Obtain a set of link flows
{

x0
a

}

. Set iteration counter n = 1.

Step 1: Update. Set tna = ta
(

xn−1
a

)

, ∀ a.

Step 2: Network loading. Assign all trips to the network using all-or-nothing assignment
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based on travel times {tna}. This yields a set of link flows {xn
a}.

Step 3: Stopping rule. If n = N , go to step 4. Otherwise set n = n + 1 and go to step 1.

Step 4: Averaging. Set x∗
a = 1

4

3
∑

i=0

xN−i
a ∀a and stop. ({x∗

a} are the final link flows.)

Table 1.2 shows the results of using this algorithm on the example shown in Figure 1.2.

Table 1.2: Capacity Restraint Algorithm Applied to the Network in Figure 1.2

Iteration Algorithm Step Link 1 Link 2 Link 3

0 Initialization t01 = 10 t02 = 20 t03 = 25
x0

1 = 10 x0
2 = 0 x0

3 = 0

1 Update t11 = 947 t12 = 20 t13 = 25
Loading x1

1 = 0 x1
2 = 10 x1

3 = 0

2 Update t21 = 10 t22 = 137 t23 = 25
Loading x2

1 = 10 x2
2 = 0 x2

3 = 0

3 Update t31 = 947 t32 = 20 t33 = 25
Loading x3

1 = 0 x3
2 = 10 x3

3 = 0

Average x∗
1 = 5.0 x∗

2 = 5.0 x∗
3 = 0

t∗1 = 68.6 t∗2 = 27.3 t∗3 = 25

As shown in Table 1.2, the capacity restraint method does not necessarily converge. In fact

in this case it “flip-flops” between links 1 and 2 and link 3 does not get loaded at all.

To remedy this situation, the algorithm can be modified as follows. Instead of using the

travel time obtained in the last iteration for the new loading, a combination of the last

two travel times obtained is used. This introduces a “smoothing” effect. The steps of

the modified capacity restraint algorithm (using weights of 0.75 and 0.25 for the averaging

process) are as follows (Sheffi, [51]):

Step 0: Initialization. Perform all-or-nothing assignment based on t0a = ta(0),∀ a. Obtain

a set of link flows
{

x0
a

}

. Set iteration counter n = 1.

Step 1: Update. Set τn
a = ta

(

xn−1
a

)

, ∀ a.

Step 2: Smoothing. Set tna = 0.75tn−1
a + 0.25τn

a , ∀ a.

Step 3: Network loading. Assign all trips to the network using all-or-nothing assignment

based on travel times {tna}. This yields a set of link flows {xn
a}.

Step 4: Stopping rule. If n = N , go to step 5. Otherwise set n = n + 1 and go to step 1.

Step 5: Averaging. Set x∗
a = 1

4

3
∑

i=0

xN−i
a ∀a and stop. ({x∗

a} are the final link flows.)

The smoothing is accomplished by creating a temporary link-travel-time variable τn
a , which

is not used as the travel time for the next iteration (see step 1). Instead it is averaged

together with the travel time used in the last iteration, tn−1
a , to obtain the link travel time
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for the current iteration, tna .

The application of this modified capacity restraint algorithm using the network shown in

Figure 1.2 is shown in Table 1.3.

Table 1.3: Modified Capacity Restraint Algorithm Applied to the Network in Figure 1.2

Iteration Algorithm Step Link 1 Link 2 Link 3

0 Initialization t01 = 10 t02 = 20 t03 = 25
x0

1 = 10 x0
2 = 0 x0

3 = 0

1 Update τ1
1 = 947.5 τ1

2 = 20 τ1
3 = 25

Smoothing t11 = 244.4 t12 = 20 t13 = 25
Loading x1

1 = 0 x1
2 = 10 x1

3 = 0

2 Update τ2
1 = 10 τ2

2 = 137.2 τ2
3 = 25

Smoothing t21 = 185.8 t22 = 49.3 t23 = 25
Loading x2

1 = 0 x2
2 = 0 x2

3 = 10

3 Update τ3
1 = 10 τ3

2 = 20 τ3
3 = 488

Smoothing t31 = 141.8 t32 = 42.0 t33 = 140.7
Loading x3

1 = 0 x3
2 = 10 x3

3 = 0

4 Update τ4
1 = 10 τ4

2 = 137.2 τ4
3 = 25

Smoothing t41 = 108.9 t42 = 65.8 t43 = 111.8
Loading x4

1 = 0 x4
2 = 10 x4

3 = 0

5 Update τ5
1 = 10 τ5

2 = 137.2 τ5
3 = 25

Smoothing t51 = 84.2 t52 = 83.6 t53 = 90.1
Loading x5

1 = 0 x5
2 = 10 x5

3 = 0

6 Update τ6
1 = 10 τ6

2 = 137.2 τ6
3 = 25

Smoothing t61 = 65.6 t62 = 97.2 t63 = 73.8
Loading x6

1 = 10 x6
2 = 0 x6

3 = 0

Average x∗
1 = 2.5 x∗

2 = 5.0 x∗
3 = 2.5

t∗1 = 13.7 t∗2 = 27.3 t∗3 = 26.8

1.3.4 Equilibrium assignment

As described in the following section it is possible to formulate the assignment problem as

a mathematical program, the solution of which provides the user equilibrium flow pattern

on the road network. This is the method that was used in the 1985 PWV Transportation

Study (and subsequent studies).
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1.4 The Assignment Problem as a Mathematical Program

Beckmann et al. [4], (cited by Sheffi [51]), developed the following transformation which

enabled the user equilibrium problem to be solved as a nonlinear programming problem.

The equilibrium assignment problem is to find the link flows, x, that will satisfy the user

equilibrium criterion when all the origin-destination entries, q, have been appropriately

assigned. This link-flow pattern can be obtained by solving the following mathematical

program (Sheffi, [51]):

min z(x) =
∑

a

∫ xa

0
ta(ω)dω

subject to

∑

k

f rs
k = qrs ∀ r, s

f rs
k ≥ 0 ∀ k, r, s

and xa =
∑

r

∑

s

∑

k

f rs
k δrs

a,k

where

xa = flow on arc a; x = (...,xa,....)

ta = travel time on arc a; t = (...,ta,....)

f rs
k = flow on path k connecting O-D pair r − s; frs = (...., f rs

k , ....)

qrs = trip rate between origin r and destination s

δrs
a,k = indicator variable; δrs

a,k

{

= 1 if link a is on path k between O-D pair rs

= 0 otherwise

In this formulation, the objective function is the sum of the integrals of the link performance

functions. This function does not have any intuitive economic or behavioural interpretation.

It should be viewed strictly as a mathematical construct that is utilized to solve equilibrium

problems.

The first set of constraints represents a set of flow conservation constraints. These constraints

state that the flow on all paths connecting each O-D pair has to equal the O-D trip rate.

This means that all O-D trips have to be assigned to the network. The second set of

constraints are non-negativity conditions and are required to ensure that the solution of

the problem will be physically meaningful.

The objective function above is formulated in terms of link flows while the flow conservation

constraints are expressed in terms of path flows. The third set of constraints are definitional

incidence relationships which bring the network structure into the formulation.

It has been proved that this converges to a unique solution (see Sheffi, [51], pp. 63-69).

Sheffi [51] provides the following simple example showing the solution of an equilibrium
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assignment on a two-link network as shown in Figure 1.3.

O D

Link 1

Link 2

(a) Two-link network

t1(x1)t2(x2)

x∗
2 = 2 x∗

1 = 3

1 2 3 4 5

1

2

3

4

5

Flow

Travel
Time

(b) The performance functions and the equilibrium solution

Figure 1.3: Equilibrium Example

The network shown in Figure 1.3 has two paths (which are also links), leading from the

origin, O, to the destination, D. The volume-delay curves for the two links are given by:

t1 = 2 + x1

t2 = 1 + 2x2

The O-D flow, q, is 5 units of flow, that is,

x1 + x2 = 5

The equilibrium condition for this example can be expressed as

t1 ≤ t2 if x1 > 0 and t1 ≥ t2 if x2 > 0
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In this example it can be verified by inspection that both paths will be used at equilibrium

and that the last equation can therefore be written more simply (given that x1 > 0 and

x2 > 0) as

t1 = t2

The equilibrium problem then, is to solve four equations (the two volume-delay curves, the

flow conservation condition (x1 + x2 = 5), and the user-equilibrium condition (t1 = t2), in

four unknowns: x1, x2, t1, and t2. The solution to this set of equations is

x1 = 3 flow units

x2 = 2 flow units

t1 = t2 = 5 time units

When the problem is formulated as a minimization program, the result is the following:

min z(x) =
∫ x1

0 (2 + ω)dω +
∫ x2

0 (1 + 2ω)dω

subject to

x1 + x2 = 5

x1, x2 ≥ 0

To set the problem up as a simple one-dimensional unconstrained minimization,

x2 = 5 − x1 can be substituted into the objective function and into the remaining (non-

negativity) constraints to get the problem

min z(x) =
∫ x1

0 (2 + ω)dω +
∫ 5−x1

0 (1 + 2ω)dω

subject to

x1 = 0 and 5 − x1 = 0

To solve this program, the constraints can be relaxed and the objective function can be

minimized as in an unconstrained program. If the solution satisfies the constraints, it is

valid for the constrained program as well. Carrying out the integration and collecting

similar terms, the objective function becomes

z(x1) = 1.5x2
1 − 9x1 + 30

This function attains its minimum at x∗
1 = 3, where dz(x1)

dx1
= 0. This solution satisfies the

two constraints (x1 = 0 and 5−x1 = 0) and is therefore a minimum of the constrained pro-

gram as well. The original flow conservation constraint guarantees that x∗
2 = 2 and indeed,

the solution of the mathematical program is identical to the solution of the equilibrium

equations. (Sheffi, [51])

As shown above, the flow pattern that minimizes the user-equilibrium equivalent program is,

a user-equilibrium solution. This program includes a convex (non-linear) objective function

and a linear constraint set. The convex combinations method (Frank-Wolfe) method is
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a suitable method to solve this problem. Using this method, a series of all-or-nothing

assignments are combined with the results from the previous step until a stopping criterion

is reached (see Sheffi, [51], pp. 117 -119). The choice of an appropriate stopping criterion

is discussed in Chapter 5 of this document.

The following algorithm describes the process to find a user equilibrium flow pattern using

the Frank-Wolfe method:

Step 0: Initialization. Perform an all-or-nothing assignment based on ta = ta(0), a. This

yields
{

x1
a

}

. Set iteration counter n = 1.

Step 1: Update. Set tna = ta (xn
a) , ∀ a.

Step 2: Direction finding. Perform an all-or-nothing assignment based on {tna}. This yields

a set of (auxiliary) flows {yn
a}.

Step 3: Line search. Find an that solves

min
0≤a≤1

∑

a

∫ xn
a+a(yn

a−xn
a )

0
ta(ω)dω

Step 4: Move. Set xn+1
a = xn

a + an (yn
a − xn

a) , ∀ a.

Step 5: Convergence test. If a convergence criterion is met, stop (the current solution,

xn+1
a , is the set of equilibrium link flows); otherwise set n = n + 1 and go to step 1.

The issue of an appropriate convergence criterion will be discussed in Chapter 4.

The result of applying the Frank-Wolfe (convex combinations) algorithm to the three link

network shown in Figure 1.2 is shown in Table 1.4.

The results in Table 1.4 show that that the convergence towards equilibrium is much better

than those of the heuristic methods shown earlier. After five iterations the flows are close to

equilibrium with the travel times being almost equal. As shown in Table 1.4, flow is taken

away from the congested paths and assigned to less congested paths during each iteration.

This process equalizes the travel times among all the paths and moves the system towards

equilibrium. The marginal contribution of each successive iteration to the reduction in the

value of the objective function decreases with each iteration. (Sheffi, [51])

1.5 Braess’ Paradox

In 1968 Braess [9], [10] presented an example of an equilibrium assignment problem that

produces an apparently paradoxical result. In this example, the addition of a new link

to the network results in an increase in the total travel time on the network, instead of

the decrease that would be intuitively expected. This phenomenon has become known as

Braess’ Paradox and is discussed below.

Figure 1.4 shows a simple network including one O-D pair that is connected by four links and
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Table 1.4: Frank-Wolfe Algorithm Applied to the Network in Figure 1.2

Iteration Algorithm Link 1 Link 2 Link 3 Objective Step
Step Function Size

0 Initialization t01 = 10.0 t02 = 20.0 t03 = 25.0
x0

1 = 10.00 x0
2 = 0.00 x0

3 = 0.00

1 Update t11 = 947.5 t12 = 20.0 t13 = 25.0 1975.00
Direction y1

1 = 0 y1
2 = 10 y1

3 = 0 0.596
Move x2

1 = 4.04 x2
2 = 5.96 x2

3 = 0

2 Update t21 = 35.0 t22 = 35.0 t23 = 25.0 197.00
Direction y2

1 = 0 y2
2 = 0 y2

3 = 10 0.161
Move x3

1 = 3.39 x3
2 = 5.00 x3

3 = 1.61

3 Update t31 = 22.3 t32 = 27.3 t33 = 25.3 189.98
Direction y3

1 = 10 y3
2 = 0 y3

3 = 0 0.035
Move x4

1 = 3.62 x4
2 = 4.83 x4

3 = 1.55

4 Update t41 = 26.1 t42 = 26.3 t43 = 25.3 189.44
Direction y4

1 = 0 y4
2 = 0 y4

3 = 10 0.020
Move x5

1 = 3.54 x5
2 = 4.73 x5

3 = 1.72

5 Update t51 = 24.8 t52 = 25.8 t53 = 25.4 189.33
Direction y5

1 = 10 y5
2 = 0 y5

3 = 0 0.007
Move x6

1 = 3.59 x6
2 = 4.70 x6

3 = 1.71

Update t61 = 25.6 t62 = 25.7 t63 = 25.4 189.33

two paths. The figure shows the two paths (numbered 1 and 2) and the link performance

functions for the four links. Assume that six units of flow travel between O and D (ie q=6).

The user equilibrium flow pattern for this network can be solved by inspection (due to the

travel time symmetry of the two paths). It is obvious that half of the flow would use each

path and that the solution would be:

f1 = f2 = 3 flow units

or, in terms of link flows,

x1 = x2 = x3 = x4 = 3 flow units.

The associated link travel times are:

t1 = 53, t2 = 53, t3 = 30, t4 = 30 time units

and the path times are

c1 = c2 = 83 time units, satisfying the user equilibrium criterion.

The total travel time on the network is 498 (flow-time) units.

Figure 1.5 shows the network expanded to include a new link connecting the two interme-

diate nodes. The figure shows this added (fifth) link, the performance function for this link,

and the new path (number 3) resulting from the addition of the link.

The old UE flow pattern is no longer an equilibrium solution since,
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O Dq = 6 q = 6

1 4

3 2

q = 6 q = 6

x1 = 3 x4 = 3

x3 = 3 x2 = 3

User Equilibrium Solution

Path Definitions

1 4

3 2

Path 1

Path 2

Link Performance Data
t1(x1) = 50 + x1

t2(x2) = 50 + x2

t3(x3) = 10x3

t4(x4) = 10x4

Figure 1.4: Intial Braess’ Network with Equilibrium Flows

x1 = 3, x2 = 3, x3 = 3, x4 = 3, x5 = 0 flow units
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q = 6 q = 6
5

Added link: t5 = 10 + x5

Added path: 5

3

2

c1 = 82

c2 = 93

c3 = 81

t1 = 52
t4 = 30

t3 = 40

t5 = 11

t2 = 53

c1 = 83

c2 = 83

c3 = 70

t1 = 53
t4 = 30

t3 = 30

t5 = 10

t2 = 53

One flow unit
shifts from path 1

to path 3

c1 = 92

c2 = 92

c3 = 92

t1 = 52 t4 = 40

t3 = 40

t5 = 12

t2 = 52

One flow unit
shifts from path 1

to path 3

Figure 1.5: Braess’ Network with Additional Link and New Solution
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with path travel times being

c1 = 83, c2 = 83, c3 = 70 time units.

The travel time on the unused path (path 3) is lower than the travel times on the two

used paths so this is not an equilibrium solution. Figure 1.5 shows a possible sequence of

assignment of flow units that would result in an equilibrium solution. The equilibrium flow

pattern for the new network is given by the solution

x1 = 2, x2 = 2, x3 = 4, x4 = 4, x5 = 2 flow units

with path flows

f1 = f2 = f3 = 2 flow units

and path travel times

c1 = c2 = c3 = 92 time units.

It is important to note that the total travel time on the network in now 552 (flow-time)

units compared to the 498 (flow-time) units before the fifth link was added. Therefore,

the addition of the link has resulted in the travel time of each traveller increasing from

83 to 92 time units and the total travel time increasing from 498 (flow-time) units to 552

(flow-time) units. The addition of the new link has therefore made the situation worse.

This apparently counter-intuitive result is known as Braess’ Paradox.

It should be noted that the user equilibrium objective function (see Chapter 2) did in fact

decrease, from 399 before the link addition to 388 after the link addition.

Sheffi [51] explains the paradox by pointing out that in user equilibrium the individual

choice of route is carried out with no consideration of the effect of this action on other

network users.

Figures 1.4 and 1.5 show the three paths that traffic can follow in the augmented network.

If one considers the paths shown in Figures 1.4 and 1.5, then it is obvious that, due to

symmetry, the flows on paths 1 and 2 will be equal at equilibrium.

In the case of the original network, if the total flow is Q, then the flows on all the links will

be 0.5Q.

In the case of the augmented network, if the flow on link 5 is P (i.e. on path 3), then the

flows on the various links are as follows:

Link1 = 0.5Q − 0.5P

Link2 = 0.5Q − 0.5P

Link3 = 0.5Q + 0.5P

Link4 = 0.5Q + 0.5P
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Link5 = P

Then,

Time on link 1 = 50 + 0.5Q − 0.5P

Time on link 4 = 10(0.5Q + 0.5P )

Time on link 5 = 10 + P

Time on path 1 = time on path 2

= 50 + 0.5Q − 0.5P + 5Q + 5P

Time on path 3 = 2(5Q + 5P ) + 10 + P

= 10 + 10Q + 11P

At equilibrium, the times on all the paths are equal, therefore

50 + 5.5Q + 4.5P = 10 + 10Q + 11P

40 − 4.5Q = 6.5P

P = 80
13 − 9

13Q

If, as in the example shown in the figures, Q = 6, then P = 80
13 − 54

13 = 2.

The above numerical analysis did not form part of Braess’ paper and has been added by

the author.
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Chapter 2

LITERATURE REVIEW

References in Chapter 1 to Braess’ Paradox in the literature and will not be repeated here.

2.1 Game Theory and Equilibria

2.1.1 Nash equilibrium

A number of authors have pointed out that the equilibrium assignment is an example of a

Nash equilibrium, e.g. Dafermos and Sparrow [21] as cited by Steinberg and Zangwill [54].

The Nash equilibrium (named after John Nash who proposed it) is part of game theory.

Game theory is an approach to the study of human behaviour involving a number of disci-

plines such as mathematics and economics. The formal conception of game theory as part

of economic theory was done by von Neumann and Morgenstern in their 1944 book, Theory

of Games and Economic Behavior [61].

A strategic game can be defined as consisting of [44]:

• A set of players

• For each player, a set of actions (sometimes called strategies)

• For each player, a payoff function that gives the player’s payoff to each list of the

players’ actions.

It is assumed that in a strategic game:

• Each player chooses the action that is best for him, given his beliefs about the other

players’ actions.

• Every player’s belief about the other player’s actions is correct.
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Definition 4.1: A Nash equilibrium of a strategic game is an action profile (list of

actions, one for each player) with the property that no player can increase his payoff by

choosing a different action, given that the other players’ actions remain fixed.

John Nash introduced his concept of equilibrium in 1950 and the “Nash Equilibrium” has

probably become the most widely used “solution concept” in game theory [42]. A strategic

game may have no Nash equilibrium, may have a single Nash equilibrium, or may have

many Nash equilibria [44].

Although the concept is generally referred to as the “Nash Equilibrium”, it in fact goes as

far back as 1838 and Cournot [18] (cited by [29]). Therefore it is also sometimes referred

to as a “Cournot-Nash equilibrium”.

Cournot’s equilibrium model is an economic model which deals with a noncooperative

oligopoly where firms choose output levels independently. He assumed that each firm acts

independently and tries to maximize its profit. According to Jaquier [35] it was the first,

and is probably still the most widely used model of this type.

The following are some exampless of Cournot and Nash equilibria that illustrate the concepts:

The following example of a Cournot equilibrium is based on Jaquier [35] where there are

two firms F1 and F2 in a noncooperative duopoly. The question is, what strategy should

F1 use to decide on its output level? The answer depends on what firm F1 believes about

firm F2’s behaviour. If firm F1 believes that F2 will sell q2 it can then determine the output

q1 that will maximize its profit. If q is the total output that would maximize the profit of

a monopoly, then

q1 = q − q2

It is assumed that the following functions apply:

Cost function of each of the two firms: C = 0.28q

(in order to simply the example, it is assumed that there are no fixed costs)

Market demand function: q = 1000 − 1000p

Market price function: p = 1 − 0.001q

According to Cournot’s equilibrium model, the decision on F1’s output level then depends

F1’s estimate of what F2’s output will be.

If F1 estimates that F2 will produce 200 units of the product. Then to calculate the

optimum output for F1 one can use the following “best-response function” or “reaction

function”:

q1 = 360 − 0.5q2

where 360 is the optimum quantity in the case of a monopoly.

Therefore q1 = 260 will be the output which maximizes F1’s profit.
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Note: 360 is the optimal output in the case of a monopoly (only one firm in this market).

The best response function can be derived as follows:

The profit for F1 is the total income minus the total cost of producing q1 items

out of the total production of q items.

Total cost = 0.28q1

Total income = [1 − 0.001(q1 + q2)]q1

= q1 − 0.001q2
1 − 0.001q1q2

Therefore profit = q1 − 0.001q2
1 − 0.001q1q2 − 0.28q1

= 0.72q1 − 0.001q2
1 − 0.001q1q2

Differentiating with respect to q1 and setting equal to zero to obtain the maximum

gives

0.72 − 0.002q1 − 0.001q2 = 0

or

q1 = 360 − 0.5q2

This situation is summarized in the following table.

Table 2.1: Summary of Output and Profit of F1 and F2

Firms Market Price Output Revenue Cost Profit

F1 0.54 260 140.4 72.8 67.6

F2 0.54 200 108.0 56.0 52.0

Industry 0.54 460 248.4 128.8 119.6

The Cournet equilibrium occurs when q1 = q2.

q1 = 360 − 0.5q2, and

q2 = 360 − 0.5q1

q1 = 360 − 0.5(360 − 0.5q1)

q1 = 360 − 180 + 0.25q1

q1 − 0.25q1 = 180

0.75q1 = 180

q1 = q2 = 240

One of the classic examples in game theory is the Prisoners’ Dilemma. The description of

this problem that is given below is based on McCain [42].
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Al and Bob are two burglars who caught near the scene of a burglary. Each is given the

“third degree” separately by the police. They each have to choose whether or not to confess

and implicate the other. If neither of them confess, then both them will be sentenced to

one year in prison on a charge of carrying a concealed weapon. If each of them confesses

and implicates the other then both of them will go to prison for 10 years. However, if one

should confess and implicate the other, and the other burglar does not confess, the one who

has confessed will be allowed to go free and the other one will be sentenced to 20 years on

the maximum charge.

The strategies in this game are “confess” or “do not confess”. The payoffs (actually penal-

ties) are the sentences to be served. It is possible to show all of this compactly in a “payoff

table” of a type that is pretty standard in game theory. The payoff table for the Prisoners’

Dilemma is shown in Figure 2.1.

The table shown in Figure 2.1 is read as follows: Each of the prisoners chooses one of two

strategies. Al chooses a column and Bob chooses a row. The two numbers in each of the

cells show the results for the two prisoners when the corresponding pair of strategies is

chosen. The number to the left of the comma shows the payoff to the person who chooses

the rows (Bob) and the number to the right of the comma gives the payoff to the person

who chooses the columns (Al). Therefore should they both confess, they both get 10 years

in prison, But if Al confesses while Bob does not then Bob gets 20 years while Al goes free.

10,10 0,20

20,0 1,1

Confess

Don’t

Confess Don’t

Bob

Al

Figure 2.1: Payoff Table For Prisoners’ Dilemma

The questions is what strategies are “rational” if they both want to minimize the time that

they will spend in prison? Al’s reasoning may be as follows: “There are two possibilities:

Bob can confess or Bob can remain silent. Suppose Bob confesses. I will then get 20 years

if I don’t confess, or 10 years if I do confess, therefore in that case it would be best to

confess. However, if Bob doesn’t confess, and neither do I, I will get one year, but should
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I confess I will go free. Either way, it is better if I confess. Therefore, I will confess.”

Bob, however, will presumably reason in the same way. Therefore they both confess and

both go to prison for 10 years. Yet, if they had both acted “irrationally” by keeping quiet,

they could have both spent only one year in prison.

What has happened in this situation is that the two prisoners have fallen into something

called a “dominant strategy equilibrium” [42].

Definition 4.2: Dominant Strategy: Let an individual player in a game evaluate se-

parately each of the strategy combinations he may face, and for each combination choose

from his own strategies the one that gives the best payoff. If the same strategy is chosen

for each of the different combinations of strategies the player might face, then that strategy

is called a “dominant strategy” for that player in that game.

Definition 4.3: Dominant Strategy Equilibrium: If, in a game, each player has a

dominant strategy, and each player plays the dominant strategy, then that combination of

(dominant) strategies and the corresponding payoffs are said to constitute the dominant

strategy equilibrium for that game.

McCain [42] states that the Prisoners’ Dilemma problem is powerful since it can be related

to a number of interactions in the modern world where individually rational actions result

in persons being worse off in terms of their own self-interested purposes. He provides the

following examples: arms races, road congestion, pollution, the depletion of fisheries and

the over-exploitation of some subsurface water resources. The Prisoners’ Dilemma is a Nash

Equilibrium where the prisoners’ make less than optimum choices.

The following example has a single Nash equilibrium. Consider, the game shown in Figure

2.2 [44].

2,2 0,3

3,0 1,1

L R

T

B

Player 2

Player 1

Figure 2.2: Example of Strategic Game

The table shown in Figure 2.2 shows the payoffs to the two players as follows:

The top row of the table shows the payoffs when Player 1 chooses T (depending on the

choice of Player 2). If Player 2 chooses L, then both players have a payoff of 2 (shown in
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the top left corner of the table). If Player 2 chooses R, then Player 1 has a payoff of 0 and

Player 2 has a payoff of 3 (top right corner of the table). Similar comments apply to the

bottom half of the table where Player 1 chooses B.

There are four action profiles (T,L), (T,R), (B,L) and (B,R) and each can be examined in

turn to check whether it is a Nash equilibrium.

(T,L): By choosing B rather T, player 1 obtains a payoff of 3 rather than 2, given player

2’s action. Thus (T,L) is not a Nash equilibrium. [Player 2 can also increase his payoff

(from 2 to 3) by choosing R rather than L.]

(T,R): By choosing B rather than T, player 1 obtains a payoff of 1 rather than 0, given

player 2’s action. Thus (T,R) is not a Nash equilibrium.

(B,L): By choosing R rather than L, player 2 obtains a payoff of 1 rather than 0, given

player 1’s action. Thus (B,L) is not a Nash equilibrium.

(B,R): Neither player can increase his payoff by choosing an action different from his

current one. Thus this action profile is a Nash equilibrium.

This game therefore has a unique Nash equilibrium, (B,R). In this equilibrium both players

are worse off than they are in action profile (T,L). They would like to achieve (T,L) but

their individual incentives point them to (B,R)[44].

McCain [42] provides the following example where there are multiple Nash equilibria.

There are two radio stations (WIRD and KOOL) that have to choose the format for their

broadcasts. They can choose between three possible formats: Country-Western (CW),

Industrial Music (IM) or all-news (AN). The audiences for these three formats are 50,

30 and 20 per cent respectively. If both choose the same format then they will split the

audience for that format equally. If they choose different formats then each will get the

total audience for that format. In this case the payoffs are proportional to the audience

shares. The audience shares are shown in Table 2.3

Scrutinizing Table 2.3 shows that there are two Nash equilibria, the upper cell in the middle

column and the middle row in the left-hand column. In both of these cases one station

chooses CW and gets a 50 per cent market share, while the other chooses IM and gets 30

per cent of the market share. It does not matter which station chooses which format. In

this example there is no dominant strategy equilibrium.

It may appear as it makes little difference which station chooses which format, since

• the total payoff is the same in both cases, i.e. 80

• both are efficient as there is no larger payoff than 80.

However, the multiplication of equilibria creates a danger. There is the danger that both

stations will choose the more profitable CW format. This will result in them splitting the
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25,25 50,30

30,50

20,50

15,15

20,30

CW

IM

AN

CW IM

WIRD

KOOL

50,20

30,20

10,10

AN

Figure 2.3: Payoff Table with Multiple Nash Equilibria

market and each getting only 25 per cent of the market. In fact there is an even greater

danger that both stations might assume that the other station will choose CW and then

choose IM. This will once again split the market, leaving both stations with only 15 per

cent of the market. A game of this type raises a “coordination problem”. How do the two

stations coordinate their choices so as to avoid the mutually inferior result of splitting the

market? Games such as this are also sometimes called coordination games.

The examples given so far all refer to games in which there are only two players. McCain

[42] provides an example with many participants. This example deals with the choice of

transportation mode (car or bus) by a large number of identical commuters. The situation

is that as more car commuters drive their cars to work, congestion increases and it takes

longer to get to work and the payoffs are lower for both car and bus commuters.

Figure 2.4 shows this. In this figure the proportion of commuters who use cars is shown on

the horizontal axis (from 0 to 1). The vertical axis shows the payoffs for the commuters.

The upper (red) line shows the payoffs for the car commuters. As expected it decreases as

the proportion of car commuters increases. The lower (blue) line shows the payoffs for the

bus commuters.

In this case the payoff for car users is higher than the payoff for bus users regardless of the

proportion of commuters travelling by car. Therefore commuting by car is the dominant

strategy, and in a dominant strategy equilibrium all commuters will drive to work in their

cars. The result is that all the commuters will have negative payoffs, whereas, if they all

used buses, they would all have positive payoffs. Therefore if all the commuters choose their

mode of transportation with self-interested rationality, they will all choose the strategy that
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Payoff to car commuters

Payoff to bus commuters

Proportion of Car Commuters

Payoff

Figure 2.4: Payoff to Commuters (A)

makes them individually better off, but all are worse off as a result.

McCain [42] points out that this is an extension of the Prisoners’ Dilemma. This is because

there is a dominant strategy equilibrium which makes everyone worse off. McCain also

states that it is probably not a very “realistic” model of the choice of transportation mode

since some people do use the buses. He then proposes the model shown in Figure 2.5 as

being more realistic.

In Figure 2.5 the buses are slowed somewhat by congestion but not as much as the cars.

Therefore the payoff to the bus users decreases at a slower rate than the payoffs to those

using cars. When the proportion of people using cars reaches q the payoff to the bus

commuters overtakes the payoff to the car commuters. For proportions of commuters greater

than q the payoff to those using their cars is worse than for those travelling by bus.

There is no longer a dominant strategy equilibrium. However, there is a Nash equilibrium

when a fraction q of the commuters drive cars. That it is a Nash equilibrium ca be seen,

since starting at q, if a single bus commuter shifts to using a car, he moves into the region

to the right of q where car commuters are worse off. On the other hand, starting from q,

should one car user change to using a bus that will move him into the region to the left of

q where the bus users are worse off. No one can improve their situation by changing mode.

McCain refers to this example of being an instance of “the tragedy of the commons”1.

1This term derives from a parable that was published by William Forster Lloyd in his 1833 book on
population (as cited by [41]).
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Figure 2.5: Payoff to Commuters (B)

The roads are a common resource that are available to all car and bus users. However,

people using cars make more intensive use of this common resource causing the resource to

be degraded (congested). The people using cars gain a private advantage by choosing to

make more intensive use of the common resource, at least while the resource is relatively

undegraded. The “tragedy” results from the fact this intensive use leads to the degradation

of the resource until everybody is worse off.

McCain describes the classical example as presented by Lloyd [41] where reference is made

to common pastures, on which theoretically, each of the farmers will increase the size of

their herd until the pasture is overgrazed and everyone is worse off.

Hollander and Prashker [33] present a number of examples from transport literature where

concepts from non-cooperative game theory have been incorporated into various models.

These include examples such as choice of mode, the choice of using a road segment or not,

choice of departure time, and choice of size of car.

Fisk [26] as cited by Hollander and Prashker [33] mentioned that the user equilibrium

principle that was introduced by Wardrop [62] is an example of a game. The reason for this

is that it satisfies the conditions of a Nash equilibrium where no driver can reduce his/her

travel time by changing their choice of path. This may result in Braess’ paradox with the

travel times being worse after the addition of a link to the network.
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2.2 Other Braess’ Networks

There are other examples of networks that exhibit Braess’ paradox properties. Some

examples of these are included below.

2.2.1 Murchland

Murchland [43] provides a modified example using a similar network to that of Braess but

with different travel-time flow relationships (volume delay functions). His added link has a

travel-time flow relationship of tpq = 0, i.e. it is an uncongesting link (the travel time does

not vary with traffic flow using it). This results in all the traffic using the new link. This

example is shown in Figure 2.6.

o r6 6

q

p

Before AfterTravel Time

Function Flow FlowTime Time

top = xop ∗ 23/3

tqr = xop ∗ 23/3

toq = 46

tpr = 46

tpq = 0

3

3

3

3

-

23

23

23

23

-

6

6

0

0

6

46

46

46

46

46

Figure 2.6: Murchland’s Modified Braess Example

In this case the travel times before the addition of link pq is 69 on both routes. After the

addition of the link, the travel times are 92 on all three routes. Therefore in this case, the

addition of a link with zero travel time increases all travel times by one third.

Although not providing an example, Murchland claims that it would be possible to construct

a similar example with a sliding scale agricultural subsidy. In this case each producer is

better off if he produces more, but the scale operates in such a way that minimum production
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by all would actually give each the greatest profit.

Murchland also states the following: “It seems to me that the importance of Braess’ paradox

for practical networks will only become apparent when sufficiently accurate congested traffic

assignment calculations become available and the phenomenon emerges, or fails to emerge,

during systematic searches for optimal link additions.”

2.2.2 LeBlanc

LeBlanc [40] also produced a modified version of Braess’ network and this is shown in Figure

2.7.

Originally the total travel time on each of the two routes is 338.4 time units and the total

travel time on the network is 2 030.4 time units. After the addition of arc 5, the travel time

on the three possible routes is 367.4 time units with the total travel time on the network

being 2 204.4 time units.

arc 1

arc 2 arc 3

arc 4

arc 5

Before AfterTravel Time

Function Flow FlowTime Time

A1(x1) = 40 + 0.5(x1)
4

A2(x2) = 185 + 0.9(x2)
4

A3(x3) = 40 + 0.5(x3)
4

A4(x4) = 185 + 0.9(x4)
4

A5(x5) = 15.4 + (x5)
4

3

3

3

3

-

80.5

257.9

80.5

257.9

-

4

2

4

2

2

168.0

199.4

168.0

199.4

31.4

Figure 2.7: LeBlanc’s Modified Braess Example

Although [40] does not mention how the equilibrium problem was solved, it can be done

using the same method that was used for the Braess’ example in the previous chapter.

If the total flow on the network is Q and P is the flow on the new link, then
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Flow on arc 1 = Flow on arc 3

= 0.5Q + 0.5P

Flow on arc 2 = Flow on arc 4

= 0.5Q − 0.5P

Flow on arc 5 = P

Time on arc 1 = Time on arc 3

= 40 + 0.5(0.5Q + 0.5P )4

= 40 + 0.03125Q4 + 0.125Q3P + 0.1875Q2P 2 + 0.125QP 3 + 0.03125P 4

Time on arc 2 = Time on arc 4

= 185 + 0.9(0.5Q − 0.5P )4

= 185 + 0.05625Q4 − 0.225Q3P + 0.3375Q2P 2 − 0.225QP 3 + 0.05625P 4

Time on arc 5 = 15.4 + P 4

At equilibrium, the total time on arcs 1, 5 and 3 equals the total time on arcs 2 and 3, or

95.4 + 1.0625P 4 + 0.25P 3Q + 0.375P 2Q2 + 0.25PQ3 + 0.0625Q4

= 225 + 0.0875P 4 − 0.1P 3Q + 0.525P 2Q2 − 0.1PQ3 + 0.0875Q4

or

0 = −129.6 + 0.975P 4 + 0.35P 3Q − 0.155P 2Q2 + 0.35PQ3 + 0.025Q4

If Q = 6 the this equation becomes

0 = −162 + 0.975P 4 + 2.15P 3 − 5.4P 2 + 75.6P

P = 2 is the only meaningful solution to this equation (the other solutions being -6 and

two imaginary numbers).

2.2.3 Fisk

Fisk [24] presented two examples of traffic paradoxes. The first is based on the network

shown in Figure 2.8.

For this network the cost functions are:

Sab = fab; Sbc = fbc; Sac = fac + 90

where f is the flow on the link. The initial flows between the nodes are:

gab = 1; gbc = 100; gac = 20.

Let x and y be respectively the flows on paths (abc) and (ac), then the travel times on the
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a b

c

Figure 2.8: Fisk’s Three-Link Network

links are as follows:

uab = 1 + x

ubc = 100 + x

uac = 90 + y

At equilibrium

uac = uab + ubc

or, 90 + y = 1 + x + 100 + x

= 101 + 2x

and x + y = 20

x, y ≥ 0

Solving for x and y, gives x = 3, y = 17,

and the total travel time on the network is 12 444.

If gab is now increased from 1 to 4 and the calculations are repeated,

then x′ = 2 and y′ = 18. The total travel time on the network is 12 384. This means that

increasing the demand gab by 3 has resulted in a decrease in the total travel time on the

network by 60 units.

Fisk provides a second example that has two modes (cars and transit) using the network.

The network is shown in Figure 2.9.

In the case of a two-mode model, the transit cost for link a, ta, is calculated as a function of

the car cost. This is because the speed of the transit vehicles (unless they have a separate

right-of-way) is dependent on the speed of the cars. Fisk uses the following relationship:

ta = Sa(fa) + pa

where pa is a flow independent penalty term for link a. The flow fa is that resulting
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Figure 2.9: Network for Two-Mode Equilibrium Example

from a user equilibrium assignment of the set (gi) on the network plus a constant term

incorporating the contribution of transit traffic.

Pi designates the set of paths between origin-destination (O-D) pair i. In Fisk’s example

she set

Pi = (dabe), i.e. there is one path for O-D pair i going from d to a to b to e

Pj = (abc), (ac), i.e. there are two paths between O-D pair j from a to c

Pk = (bc)

and the transit path between O-D pair i is

Ti = (dbce)

The transit cost between O-D pair i is given by

vi = Sdb + Sbc + Sce + constant

The car travel time between a pair of nodes is ui. If gi is increased to g′i, then to attain

equilibrium some cars between a and c will divert from (abc) to (ac) since the travel time

will have increased on (ab).

Then at the new equilibrium S′
bc < Sbc while S′

db = Sdb and S′
ce = Sce. Thus v′i < vi and

u′
i > ui. In other words, an increase in cars trips and car travel time for O-D pair i has

resulted in a reduced transit cost for O-D pair i.

Fisk states that the corollary of this is that a reduction in the number of cars may lead to

an increase in the transit cost.
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2.2.4 Fisk and Pallottino

Fisk and Pallottino [25] used a triangular network as shown in Figure 2.8 and provide

examples where increasing the travel cost or reducing the capacity of a link in the network

results in a decrease in the total travel time on the network. They also provide two examples

that occurred on the modelled network for the city of Winnipeg showing that Braess’

paradox can occur in real-world networks.

These examples differed from most of the others that are presented in the literature in that

they were from a larger network and that BPR (Bureau of Public Roads) curves were used

to represent the link delay functions. These are realistic forms of flow delay equations and

are commonly used in assignment models. Unfortunately the paper does not report what

stopping criterion was used to stop the assignment algorithm (see Chapter 5).

2.2.5 Steinberg and Stone

Steinberg and Stone [53] presented a slightly more complex network that exhibits Braess’

paradox depending on the link performance function on one of the links. (The authors

mention that it was brought to their attention after their paper had been accepted for

publication that a similar paradox had been presented by Frank [32]). The authors show

that increasing the congestion effect along a route can result in the abandonment of a

different route.

Figure 2.10 shows the network and the four possible routes between the origin and desti-

nation.

Figure 2.11 shows the cost functions on the different arcs. Arc e32 has a cost of θf +2 where

θ is a parameter such that θ ≥ 0. If one increases the parameter θ, then the congestion is

increased on route R3 only.

When θ is less than 2 (0 < θ < 2), all four routes have positive flows at equilibrium. These

four flows and the associated user costs (or travel times) are shown in Table 2.2. Since the

flows are all greater than zero, the user costs are all identical. By symmetry, R1 and R2

have the same flow, but the flows along R3 and R4 are different.

It can be seen from Table 2.2 that the flow on R4 is decreasing in θ and vanishes at θ = 2.

For θ ≥ 2 the user cost along R4 is greater than along the other routes and therefore R4

attracts no trips. The flows and user costs for θ ≥ 2 are shown in Table 2.3.
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Figure 2.10: Network and routes
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Figure 2.11: The network with cost functions and demand

Table 2.2: Flows and user costs for 0 < θ < 2

Route R1 R2 R3 R4

Flow

User cost

38θ+42
11θ+37

38θ+42
11θ+37

118
11θ+37

20−10θ
11θ+37

292θ+714
11θ+37

292θ+714
11θ+37

292θ+714
11θ+37

292θ+714
11θ+37

2.3 Other Traffic Paradoxes

2.3.1 Smith

Smith [52] showed that for certain network configurations, the total travel costs could be

decreased by increasing travel cost locally at a congested intersection. This situation may be
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Table 2.3: Flows and user costs for θ ≥ 2

Route R1 R2 R3 R4

Flow

User cost

6θ+14
2θ+9

6θ+14
2θ+9

26
2θ+9 0

54θ+178
2θ+9

54θ+178
2θ+9

54θ+178
2θ+9

64θ+158
2θ+9

Route R1 R2 R3 R4

Flow

User cost

explained by the increased local costs forcing the motorists towards the system equilibrium.

2.3.2 Cohen and Kelly

Cohen and Kelly [16] presented an example where a Braess type paradox occurs in a queuing

network. The before and after networks are shown in Figure 2.12. The networks contain two

kinds of servers, FCFS and IS. FCFS denotes a single-server queue with a first-come-first-

served queue discipline. Service times are assumed to be independent exponential random

variables with mean 1/φ time units, where φ > 0 is fixed throughout. If individuals arrive

at a stationary FCFS queue in a Poisson stream with a mean of x individuals per unit of

time, where x < φ, the mean time in the queue of an individual is 1/(φ − x).

IS denotes an infinite-server queue at which an individual is delayed by some random

amount of time, the average of which is independent of the number of individuals awaiting

service. In the initial network, there is an average delay of 2 units in the two IS queues.

The augmented queuing network shown in the figure differs from the initial network by

having an IS queue with a mean delay of 1 time unit added to it.

Cohen and Kelly prove the following theorem showing that for certain parameter values,

if individuals choose a route from entry to exit so as to minimize their average transit

time, given the choice of other individuals, then at equilibrium the mean transit time in

the augmented network is strictly larger than the mean transit time in the initial network.

Theorem 4.1. let 2λ denote the total traffic departing from node A and assume 2λ >

φ− 1 > λ > 0. Then the mean transit time in the initial network is strictly larger than the

mean transit time in the initial network is strictly less than 3 time units, while the mean

transit time in the augmented network equals 3 time units.
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Figure 2.12: Initial and Augmented Queuing Networks

2.3.3 Sheffi

Sheffi [51] presents an example of a paradox in a stochastic user equilibrium (SUE) model.

The other models described in this document are deterministic in that it assumed that

there is perfect knowledge allowing travellers to always select the path with the shortest

travel time or least cost. This assumption is relaxed in stochastic models where a random

component is included in the traveller’s perception of travel time.

The networks are shown in Figure 2.13 with(a) showing the original network and (b) the

augmented network. Each link of the original network has an actual (measured) travel time

of 1 time unit. There are two paths between the origin and the destination, each with a

measured travel time of 2 time units. The addition of the centre link with measured travel

time of 0.1 time units in (b) provides one additional (longer) path from the origin to the

destination.

However, due to its stochastic nature the model will assign some trips to the longer path

and the total system travel time will therefore increase. For example in Figure 2.13, the

new average travel time will be between 2.0 and 2.1 units of time per traveller, compared

with 2.0 units before the introduction of the new link.

Therefore, in this example, the total travel time increased after the network was seemingly

improved. If the users of the system were interviewed, however, they would all have reported
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Figure 2.13: Networks for Paradox Example for a Stochastic Equilibrium model

an improvement in the travel time. Thus the travel time as travellers perceive it did decrease

even though the total measured travel time increased as a result of the improvement.

2.3.4 Downs-Thomson

Arnott et al. [2] describe what has been called the Downs-Thomson paradox [22], [56]. This

is as follows.

Suppose there is a roadway along a route which is served also by rail. If travel costs by

road rise with the number of drivers, while rail costs are independent of ridership; then

at equilibrium, just that number of travellers will drive to raise travel costs by road to

equal costs by rail. If road capacity is now expanded, users will shift to the road until it as

congested as before.

If the railway has to balance its budget, the loss of revenue will force it to increase fares

and cut service, inducing more passengers to switch, so that travel costs on both modes

end up higher than before the road expansion.

2.3.5 Arnott, De Palma and Lindsey

Arnott et al. [2] provide an example where they consider a Y-shaped highway corridor

with one bottleneck on each arm and a third bottleneck downstream. Two groups of

commuters use this corridor, each passing through one of the upstream bottlenecks and

then the downstream bottleneck. They show that expanding the capacity of one of the

upstream bottlenecks can raise travel costs because reduced congestion upstream is more

than offset by increased congestion downstream.
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This is the principle followed in ramp-metering where the traffic entering a freeway from

an on-ramp is restricted so as to reduce the congestion on the freeway and also the total

delay in the system.

2.3.6 Chen and Hsueh

Chen and Hsueh [13] describe a discrete-time dynamic user-optimal departure time/route

choice model. In this model, travellers’ departure times are not fixed, but chosen so as to

minimize their travel times. They provide a couple of simple examples to demonstrate the

model including one using a similar network to that of Braess where Braess’ paradox is

shown to occur.

2.3.7 Bean, Kelly and Taylor

Bean et al. [3] cite the following authors that describe paradoxes similar to the Braess’

paradox:

It has been shown that paradoxes similar to Braess’paradox can occur in, for example, me-

chanical and electrical networks (Cohen and Horowitz [15]), water-supply networks (Calvert

and Keady [11]) and queueing networks under fixed (Cohen and Kelly [16], see Figure 2.12

and the accompanying description) and dynamic (Calvert et al. [12]) routing schemes.

Also Whitt [63] discusses an example where the efficiency of a waiting room decreases as

the waiting capacity is increased.

Bean et al. show that a Braess’ paradox can occur in a loss network. Loss networks are

used to model multi-resource access problems where requests for access that cannot be fully

met are denied and lost. The classical example is the circuit-switched telephone network.

The authors provide two examples. One for a network operating under fixed routing and

the second with a network in which alternative routing is allowed.

2.3.8 Braess’ paradox in computer networks

Although the majority of the work described in this dissertation refers to road networks,

Braess’ paradox can occur in other networks such as computer networks. A considerable

amount of work has been published on the paradox in computer metworks, e.g. Kameda et

al. [27]. Much of the work described by Roughgarden in his book on Selfish Routing [50]

deals with computer networks.

2.3.9 Chen

Chen [14] investigated the mechanical analogue of Braess’ paradox as proposed by Cohen

and Horowitz [15]. This is shown in Figure 2.14. In part (a) of Figure 2.14 the system
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Figure 2.14: Mechanical Analogue of Braess’ Paradox

consists of two springs in series, P −A and B −Q, that are connected by a string between

A and B. There are also two “safety” strings between P and B and between A and Q. A

weight with a mass of M is suspended from Q.

The question is, what happens to the position of the weight with mass M , if the string A-B

is cut? Cohen and Horowitz showed that for certain combinations of strength of springs,

length of strings and mass of weight, the weight will rise instead of dropping as could be

expected. This can be explained by the fact that initially the springs are acting in series,

but act in parallel after the string is cut.

Cohen and Horowitz carried our a number of experiments and claimed that the weight rises

as soon as the string A−B is cut. Chen, however, proved that the weight will initially drop

before rising. This drop may be for a very short period that may be difficult to observe in

practice.

2.4 Predicting the Occurrence of Braess’ Paradox

In real world networks, it is generally not possible to predict whether adding a new link will

results in Braess’ paradox or not. LeBlanc [40] said the following in this regard: “When

dealing with a network with many origins and destinations, it is not clear whether adding

an arc will increase or decrease the congestion at equilibrium.”

Steinberg and Zangwill [54] produced a theorem showing that, under what they term “rea-
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sonable assumptions”, Braess’ paradox is as likely to occur as not. Whether this is always

the case in real world networks will be tested later in this dissertation. It is also unclear

whether it will be applicable (or tractable) in a real world situation where a number of road

improvements may be implemented in a single year and where an improvement will proba-

bly be used by routes connecting many origin-destination pairs and there are thousands of

O-D pairs to be considered.

Frank [32], [31] analysed Braess’ original networks and developed a series of theorems which

give the necessary and sufficient conditions for the existence of all different types of Braess’

flows.

Steinberg and Zangwill [54] analysed an arbitrary network and showed that adding a link

will increase costs if the ratio of the determinants of two large matrices satisfy certain

conditions. However, Dafermos and Nagurney [20] point out that these conditions cannot

be checked a priori in a computationally efficient way.

Dafermos and Nagurney [19] also produced formulae that could be used to determine,

under certain conditions, the change in traveller’s costs on every O-D pair induced by the

addition of a new path. These can be used to determine whether Braess’ paradox occurs in

the network. This requires what Dafermos and Nagurney term as “lengthy calculations”.

This can be seen from the fact that for a network not to exhibit Braess’ paradox, the ratio

of the determinants of two matrices must be non-positive. Parts of these matrices consist

of the sub-matrices A and B, where:

A is a K by Q matrix

B is a Z by Q matrix

K is the number of links in the network

Q is the number of paths, and

Z is the number of O-D pairs

These parameters will lead to very large matrices in real-world networks where there are

hundreds (possibly thousands) of zones and thousands of links. As an example, the latest

regional model for the province of Gauteng has 899 zones or 808 201 O-D pairs, and there

are bigger models in existence. Determining all the used paths in a real-world network will

be a major task. It is therefore thought that this methodology is not practical for real-world

examples.

2.4.1 Pas and Principio

Pas and Principio [45] analysed the classical Braess’ Paradox network as shown in Figure

2.15 with a total demand for travel from origin o to destination r of Q and the travel time

functions for the different links are as shown in Figure 2.15.
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Figure 2.15: Classical Braess’ Networks

Their analysis resulted in the following inequality for the values of Q where Braess’ paradox

will occur:

2(α1−α2)
3β1+β2

< Q <
2(α1−α2)

β1−β2

The above inequality therefore implies that there are values of demand, Q, where the

demand is too low for for Braess’ paradox to occur and also where the demand is too high

for Braess’ paradox to occur. That is, Braess’ paradox will not occur when congestion levels

are too low or too high. Using the values of α and β given in Figures 1.4 and 1.5 results in

the range 2.58 < Q < 8.89 where Braess’ paradox will occur.

Pas and Principio provide a figure which gives a graphical representation of how the flow

on the different routes in the classical Braess’ network vary as the demand Q varies. This

Figure is reproduced as Figure 2.16. There is an apparent error in the figure in [45] with

the start of the range where Braess’ paradox occurs shown as 3.64 instead of 2.58. This has

been corrected in Figure 2.16.

Pas and Principio also cite an example of a network presented by Arnott and Small [1]

where the time functions on the links of the network shown in Figure 2.15 are the following:

top = 0.01 × fop

tqr = 0.01 × fqr

toq = 15

tpr = 15
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Figure 2.16: Route flows as a function of demand - Braess’ example

tpq = 7.5

In this case the range where Braess’ paradox occurs is 500 < Q < 1500 (Arnott and Small

used a value of Q = 1000 in their example).

The figure showing the flows on the different routes in this case is reproduced as Figure

2.17.

It is interesting to note that in both the Braess’ example and Arnott and Small’s example,

there is no flow on the new link once the demand reaches the upper limit of the range where

Braess’ paradox occurs.

Similar analysis to those shown in Figures 2.16 and 2.17 will be presented in Chapter 5 of

this dissertation.

2.4.2 Valiant and Roughgarden

Valiant and Roughgarden [59] describe how a number of recent papers have studied strate-

gies that will allocate additional capacity to a network without causing Braess’ paradox to

occur. They then raise the question about the prevalence of Braess’ paradox. If it is a rare

occurrence in what they term “selfish routing” networks, the the strategies would probably

be superfluous for real-world networks. However, if it is a widespread phenomenon, then

the problem of adding capacity to a network should be treated with care. They use the

term “selfish routing” to describe the situation in the equilibrium assignment where each

motorist is interested only in minimizing his own travel time.

This problem is the basis of their paper and they summarize the problem in the following
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Figure 2.17: Route flows as a function of demand - Arnott and Small’s example

question:

Is Braess’ paradox a “pathological” example, or a pervasive phenomenon in selfish

routing networks.

Working with a model of random networks they prove the following:

• With high probability as n → ∞ there is a choice of traffic rate such that the Braess

ratio of a random network is strictly greater than 1.

• There is a constant ρ > 1 such that, with high probability as n → ∞, there is a choice

of traffic rate such that the Braess ratio of a random network is at least ρ.

Where:

The Braess ratio of a network is the largest factor by which the removal of one or

more links can improve the travel time at an equilibrium flow.

“With high probability” means with probability tending to 1 as n → ∞

n is the number of nodes (or vertices as Valiant and Roughgarden term them) in

the random network.

The large random networks that Valiant and Roughgarden worked with had links that had

random linear delay functions, a single source node, and a single sink node.

By proving the statements listed above, Valiant and Roughgarden showed that with for the

random networks that they defined, Braess’ paradox is a widespread phenomenon.
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They applicability of Valiant and Roughgarden’s to real-world road networks is unclear

since:

• For road networks the volume delay functions are not linear.

• Valiant and Roughgarden used only a single origin-destination pair for their trips.

It is possible that in a real-world road network, while a certain link or set of links

may exhibit Braess’ paradox for trips between one origin-destination pair this may

be outweighed by the benefits of the link or links for trips between other O-D pairs

and also using the same links.

The question of the prevalence of Braess’ paradox in real-world road networks will be

addressed in Section 5.1.

Roughgarden also published a book entitled “Selfish Routing and the Price of Anarchy”

[50]. This book provides an extensive bibliography on the subject of selfish routing including

Braess’ paradox.

2.5 Eliminating Braess’ Paradox

Fisk [24] said that “sensitivity tests should be performed on a network before policies

designed to reduce congestion are implemented, since such policies are usually aimed at

reducing origin to destination and total travel costs.”

LeBlanc [40] proposed a solution to the network design problem that takes Braess’ paradox

into account. The network design problem refers to selecting the optimal set of proposed

improvements to the network taking budget constraints into account. In other words, the

authorities often have a number of road projects that they would like to construct but

budget constraints will not permit them all to be built. The problem is then to select that

set of the projects that will provide the optimum benefit using the funds available.

LeBlanc’s solution made use of a branch and bound algorithm. In order to avoid Braess’

paradox, LeBlanc used user equilibrium (UE) and system optimal (SO) rules to define the

lower and upper bounds. This is based on the fact that for the same network, the UE

assignment has a total travel time greater than or equal to the total travel time from the

SO traffic assignment. In addition, a network with new links results in a smaller SO total

travel time. However, as pointed out by Zeng and Mouskos [64] the method rapidly becomes

intractable as the number of variables increases and is therefore only applicable for very

small networks.

Foulds [30] presented a heuristic algorithm to eliminate those arcs which show Braess’

paradox from a network. This procedure is iterative in that it repeats the following sequence

of steps:
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First a traffic assignment process is used to find user equilibrium flows. These flows are

then used to calculate the arc costs that will be experienced at equilibrium. That is the arc

flows for each arc are substituted into the volume delay (link flow) expression. These arc

costs are temporarily assumed constant. A branch and bound routine is then used to find

the optimal set S, of arcs to eliminate so as to minimize the total user cost. It is assumed

that the arc costs are likely to be realistic estimates of those that are likely to be actually

experienced. The traffic assignment process is then repeated with the arcs in S permanently

deleted. The cycle of traffic assignment and branch and bound is repeated until either no

further arcs are eliminated or congestion fails to continue to decrease at which point the

procedure is terminated.

The present author considers it incorrect to eliminate a set of arcs at one time. An arc that

initially exhibits Braess’ paradox may no longer do so after one of the other arcs has been

eliminated. This is due to the change in flows that will occur after the removal of one arc

and which will affect the flows on some of the other routes.

2.5.1 User Optimal vs System Optimal

As noted in Section 2.2, the following two types of equilibrium are possible in a traffic

network:

• User equilibrium, where the journey times in all routes used are equal and less than

those which would be experienced by a single vehicle on any unused route.

• System optimal, where the average journey time over all routes is a minimum.

In a normal road network, user equilibrium applies since travellers will attempt to minimize

their travel times even though this may have a negative impact on other users of the system,

whereas system optimal requires cooperation between travellers.

Kelly [36] said the following with regard to attempting to force drivers towards the system

optimal situation:

Traffic dependent tolls are sufficient to force the system to an equilibrium which minimizes

average network delay: the tolls charge drivers for the delays they cause to others. The

study of tolls has long been a topic of central importance in economics, and it is interesting

to note that Pigou [46] used a simple two-link traffic network to illustrate that taxation

could ’create an “artificial” situation superior to the “natural” one’. (We note in passing

that developments in electronics now make feasible the practical application of both route

guidance and road pricing [60].
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Chapter 3

DESCRIPTION OF THE

MODELS USED IN ANALYSIS

Two different models were used to test large networks for the effects of Braess’ Paradox.

Both of these models were developed by the PWV Consortium for the then Transvaal

Provincial Administration: Roads Branch. In Gauteng this organisation has now been

replaced by the Gauteng Department of Public Transport, Roads and Works (Gautrans).

The PWV Consortium was made up of five consulting engineering firms and one firm of town

and regional planners. The name PWV refers to the Pretoria-Witwatersrand-Vereeniging

area of the old Transvaal Province and included most of the present province of Gauteng.

In addition, other adjacent areas such as Brits, Witbank and Sasolburg were included in

the modelled area. Brief descriptions of the two models are provided below.

3.1 1985 PWV Update Model

The first PWV model was developed in the mid 1970s with 1975 as the base year. This

model was updated in the 1980s with 1985 as the base year. This model had the years 2000,

2010 and 2025 as target years for which forecasts were made. This model consisted of 626

zones of which 36 were external zones. External zones represent the traffic entering and

leaving the study area where roads cross the boundary of the study area. Further details

of the model can be found in [47].

As part of the study a construction programme of the road improvements needed each year

up until 2000 was drawn up. These recommended road improvements took the form of

either new roads or the construction of additional lanes on existing roads. In total 186

road sections were recommended for construction between 1988 and 2000. The philosophy

followed in recommending improvements to the network was that construction should take

place to relieve congestion on roads when the operating conditions reached a level of service

of D. The concept of level of service will be discussed at the end of this chapter.
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Since a detailed construction programme had been drawn up it was possible to construct

a modelled road network for each of the years between 1988 and 2000. Trip matrices for

each of these years were obtained by interpolating between the matrices for 1985 and 2000.

This enabled 13 different network scenarios to be tested for the effects of Braess’ Paradox.

In this testing all the roads that had been added from 1988 onwards were tested for Braess’

Paradox for each year between 1988 and 2000.

3.2 The Vectura Study

The Vectura (or PWV Public Transport Study) had 1991 as its base year and as its name

implies, greater emphasis was placed on public transport. This model had forecasts for

the years 2000 and 2010. The model contained 668 zones of which 35 were external zones.

There were the following two reasons for the increase in the number of zones:

• A number of zones to the north-west of Pretoria were subdivided due to the develop-

ment that was taking place in the area.

• The study area was expanded to include the area around Carletonville which had

been included in the province of Gauteng.

In addition to the updated land use information that was included in the model, a new set

of volume-delay curves was used in the model. These curves were validated by means of

travel time surveys and showed an improvement in the representation of increased travel

time due to congestion on the roads. Further details of the model can be found in [48] and

[49].

In an exercise carried out on behalf of Gautrans, an investigation was done into which were

the critical roads that should be constructed by the years 2000 and 2010. A different philo-

sophy was followed in that road improvements were only included in order to bring relief to

roads experiencing level of service F. This provided two further sets of road improvements

that could be tested for Braess’ Paradox using a different model.

3.3 Level of Service

The concept of level of service uses qualitative measures that characterize the operational

conditions within a traffic stream and their perception by motorists and passengers. The

descriptions of individual levels of service characterize these conditions in terms of such

factors as speed and travel time, freedom to manoeuvre, traffic interruptions, and comfort

and convenience.

Six levels of service are defined for each type of facility making up the road network. They

are given letter designations, from A to F, with level of service (LOS) A representing the
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best operating conditions and LOS F the worst. Each level of service represents a range of

operating conditions.

The volume of traffic that can be served under the stop-and-go conditions of LOS F is

generally accepted as being lower than possible at LOS E; consequently, the flow at level

of service E is the value that corresponds to the maximum flow rate, or capacity, of the

facility. For most design or planning purposes, however, levels of service D or C are usually

used since they ensure a more acceptable quality of service to the road users.

As mentioned above, six levels of service are defined for each facility type. As an example,

the following are descriptions of the different levels of service on freeways (from [58].

• LOS A describes primarily free-flow operations. Average operating speeds at the

free-flow speed generally prevail. Vehicles are almost completely unimpeded in their

ability to manoeuvre within the traffic stream. The average vehicle spacing affords

the motorist with a high level of physical and psychological comfort.

• LOS B also represents reasonably free flow, and speeds at the free-flow speed are

generally maintained. The ability to manoeuvre within the traffic stream is only

slightly restricted, and the general level of physical and psychological comfort provided

to drivers is still high.

• LOS C provides for flow with speeds still at or near the free-flow speed of the freeway.

Freedom to manoeuvre within the traffic stream is notably restricted at LOS C, and

lane changes require more vigilance on the part of the driver. The driver now expe-

riences a noticeable increase in tension because of the additional vigilance required

for safe operation.

• LOS D is the level at which speeds begin to decline slightly with increasing flows.

Freedom to manoeuvre within the traffic stream is more noticeably limited, and the

driver experiences reduced physical and psychological comfort levels.

• LOS E, at its lower boundary, describes operation at capacity. Operations in this

level are volatile, because there are virtually no usable gaps in the traffic stream. Ma-

noeuvrability within the traffic stream is extremely limited, and the level of physical

and psychological comfort afforded the driver is extremely poor.

• LOS F describes breakdowns in vehicular flow. Such conditions generally exist within

queues forming behind breakdown points.
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Chapter 4

THE IMPORTANCE OF USING

APPROPRIATE STOPPING

CRITERIA IN THE

EQUILIBRIUM ASSIGNMENT

4.1 The equilibrium assignment problem

As mentioned earlier, Beckmann et al. [4] showed that the equilibrium assignment problem

could be transformed into an equivalent optimisation problem. This can be solved using

the Franke-Wolfe algorithm to combine the results of successive all-or-nothing assignments

in an iterative manner. Each all-or-nothing assignment uses the link travel times obtained

using the link volumes resulting from the previous iteration of the process.

It has been proved that that this process converges to a unique solution (see Sheffi, [51],

pp. 63-69). Since it is an iterative procedure, the question is how many iterations need to

be performed? This question was addressed by Boyce et al. [8], Bloy [6], [7] and Blaschuk

and Hunt [5].

4.2 Stopping Criteria for the Equilibrium Assignment Pro-

blem

Evans [23] proved that the addition of the all-or-nothing auxiliary assignment always leads

to an improved solution. He also showed that provided enough iterations are performed,

the Frank-Wolfe procedure converges to the equilibrium solution. However, the successive

improvements become smaller with each iteration and it may take a very large number of

iterations to reach convergence in a real-world network.
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Thomas [55] lists the following three basic types of stopping rules:

• Those that look at the differences between estimates of quantities, usually link flows

or costs, derived in successive iterations and, on the basis of the differences, decide

whether or not continuation of the process is likely to bring about significant changes.

• Those which measure the agreement between the latest assumed link costs and assi-

gned flows and the assumed cost/flow relationships.

• Those that consider the potential improvement that may result from continuing with

more iterations.

Sheffi [51] has the following to say concerning convergence and the number of iterations

required:

In solving the UE program over a large network, each iteration involves a significant com-

putational cost, due primarily to the effort required to calculate the shortest paths. It is

important then, that, a good answer is achieved after a relatively small number of itera-

tions.

In practice, this is not a major problem for two reasons. First, the convergence pattern of

the convex combinations algorithm is such that the first few iterations are the most “cost

effective.” In other words, the flow pattern after only a few iterations is not very far from

equilibrium. Second, the convergence criteria used in practice are not very stringent and

thus convergence can be achieved after only a small number of iterations. This is because

the accuracy of the input data does not warrant the effort needed to obtain an extremely

accurate equilibrium flow pattern.

Sheffi provides a figure similar to Figure 4.1 that shows the convergence rate for three levels

of congestion on what he calls a “medium-sized” network.

He continues by saying: In actual applications, only four to six iterations are usually suffi-

cient to find the equilibrium flow pattern over large urban networks. This number reflects

common practice in terms of trade-offs among analytical accuracy, data limitations, and

budget, given typical congestion levels.

Results obtained when plotting the results obtained using the Gautrans model appear

to support Sheffi’s statements. Figure 4.2 shows the value of the objective function of

the optimization problem plotted against the number of iterations. (This is the objective

function used in expressing the equilibrium assignment problem as a mathematical program

- see Section 2.4).

Probably the most popular transportation modelling program in the world, EMME/2, (ap-

proximately 2000 licences in 73 countries worldwide) provides the following three stopping

criteria with defaults [34]:
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Figure 4.1: Rate of Convergence Depending on Level of Congestion - Sheffi [51]
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• Maximum number of iterations (default = 15).

• The admissible value, in percentage, for the relative gap (default = 0.50). The relative

gap is an estimate of the difference between the current assignment and a perfect

equilibrium assignment, in which all paths used for a given O-D pair would have

exactly the same time. It is computed using the best lower bound and the current

value of the objective function.

• The admissible value, in minutes, for the normalized gap (default = 0.50). The

normalized gap, or trip time difference, is the absolute difference between the mean

trip time of the current assignment and the mean minimal trip time. The mean trip

time is the average trip time used in the previous iteration while the mean minimal trip

time is the average time computed using the shortest paths of the current iteration.

The relative gap decreases strictly from one iteration to the next, whereas the trip time

difference does not necessarily have this property. In a perfect equilibrium assignment, both

the relative gap and the normalized gap are zero [34].

Boyce et al. [8] investigated the relative gap required in order to produce stable link flows

when comparing two scenarios to decide whether a new project should be built or not. They

concluded that a relative gap of 0.01 was required to obtain the desired level of stability

in the link flows. Their analysis was based on the examination of figures (such as Figure

4.3) showing the difference in link flows for different values of relative gap. As shown in

Figure 4.3, only a limited number of assignments were done with the relative gap varying

by a factor of 10. However, there is no indication of what happens at intermediate values

of relative gap, e.g. 0.05.

It should also be remembered that with the increased computing power that is now available,

the cost of extra iterations is much lower than it was in 1985 when Sheffi wrote his book.

This author [6], [7] proposed that there could be two possible stopping criteria, depending

on for what purpose the results of the assignments are to be used. (Blaschuk and Hunt [5]

made a similar proposal). They are the following:

• The link volumes are to be used in the geometric and/or pavement design of a road.

In this case the degree of convergence does not have to be too stringent since a small

difference in the assigned volumes will not affect the number of lanes required on the

road or the pavement design.

• A decision has to be made concerning the financial benefit of a new road or a number

of proposed new roads have to be ranked according to their economic benefits. These

are usually calculated based on construction costs and the benefits brought about by

the reduction in total travel times and distances resulting from the inclusion of the

new roads in the network. It is more important to have a greater degree of convergence
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in this case because the effect of a small difference in volumes can be quite large when

the volumes are near capacity (see Figure 1.1).

4.3 Investigation into the Effect of Different Stopping Crite-

ria (Bloy [6], [7])

In investigating the effect of using different stopping criteria on the results of user equi-

librium assignments use was made of the Gautrans Model (also known as the Vectura

Model). The investigation was carried out using the EMME/2 computer software. The

macro writing capabilities of this program made it easy to write a program that could

test a number of alternatives overnight and over weekends without having to set up each

alternative manually.

In order to test the two possible cases mentioned in Section 6.2 above, two investigations

were carried out. These were the following:

• A proposed 2000 network had been developed as part of a previous study. This

network included those roads that should have been constructed already in order to

relieve congestion on the network. These proposed roads were evaluated by removing

them from the network, one at a time, and then doing a trip assignment. A benefit-

cost ratio for each road was then obtained by calculating the cost of the difference

in total travel times and distances that resulted from removing the roads from the
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network and the estimated costs of constructing the roads. The proposed roads were

then ranked according to their benefit-cost ratios. This ranking was carried out using

different stopping criteria to see when these rankings stabilized.

• The trip matrix for the year 2000 was assigned on the 2000 network using different

stop criteria. The assigned volumes were compared to screen line counts1 that were

done in 2000. In addition an analysis was carried out in order to determine how

the assigned link volumes obtained with different numbers of iterations and different

values of relative gap differed from those for the ultimate equilibrium assignment. Two

different models were used in this exercise, the 1985 PWV Model and the existing

Gautrans Model. Although both models cover the same area, they are different in

that they have different volume delay functions and, as a result different rates of

convergence.

4.3.1 Effect of number of iterations on the financial evaluation of projects

Boyce et al. [8] in their analysis used relative gaps differing by a factor of 10 (10, 1, 0.1, etc)

and then showed the differences in volumes that were obtained graphically in arriving at

their conclusion that a relative gap of 0.01 was required for stability results. The purpose

of this part of the study was to use benefit-cost ratios of different projects to have a more

quantitative evaluation and to evaluate what happens for intermediate values of relative

gap.

A total of 32 different projects were proposed to alleviate the congestion on the provincial

road network in Gauteng. The economic value of these projects was evaluated by comparing

the total vehicles hours and vehicle kilometres on the network with and without the projects

in the network. Benefit-cost ratios for each project were calculated using average values

for time and vehicle operating costs and the estimated costs of the projects. The projects

were then ranked according to the resulting benefit-cost ratios. This was done for different

numbers of iterations and relative gap so as to determine at what point the ranking become

stable and/or when they were the same as obtained with the ultimate equilibrium solution.

The “ultimate” equilibrium solution was obtained by using a very large number for the

number of iterations and very small values of the relative and normalized gaps as stopping

criteria.

The results obtained using between 15 and 30 iterations are shown in Table 4.1. Table

4.2 shows the rankings obtained with different values of the relative gap. For reasons of

conciseness, the different projects have been assigned numbers from 1 to 32, and only the

top 15 in the rankings are included in the tables.

1Screen lines are imaginary lines drawn across the modelled area (usually horizontally and vertically).
Traffic counts are done where these lines cross the road network and these counts are are are used for
calibration purposes in the modelling process.
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Table 4.1: Ranking of Projects for Different Numbers of Iterations

Rank 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 12 12 12 25 12 25 25 25 28 28 5 30 30 30 30 30

2 7 25 25 12 25 12 12 28 5 5 30 25 25 25 25 25

3 25 10 10 7 7 10 28 12 12 25 25 5 32 32 32 32

4 10 7 7 28 10 7 7 10 10 30 17 32 5 5 5 5

5 28 28 28 10 17 17 10 17 11 12 10 28 7 7 11 17

6 17 17 17 17 28 28 17 7 17 10 32 7 28 11 7 11

7 23 11 23 23 23 23 23 11 22 17 7 11 11 1 17 7

8 21 23 11 11 11 21 11 5 25 22 12 22 8 24 10 10

9 11 21 21 21 21 1 21 21 21 32 28 12 12 28 19 28

10 1 1 1 1 1 11 1 22 1 7 22 21 21 22 28 19

11 31 31 31 31 14 22 22 1 23 23 23 1 1 21 16 16

12 3 14 14 22 16 2 2 23 2 21 21 24 22 23 23 23

13 22 20 16 16 22 14 16 2 7 2 11 23 24 17 1 24

14 2 16 2 2 2 3 14 3 3 3 2 2 4 12 22 22

15 14 2 3 3 3 14 3 24 32 18 3 3 23 2 2 2

Table 4.2: Ranking of Projects for Different Values of Relative Gap

Rank 1.0 0.5 0.4 0.3 0.2 0.10 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 Ult

1 11 25 7 7 25 25 25 25 25 25 25 25 25 25 25

2 25 10 25 17 7 7 7 7 7 7 7 7 7 7 7

3 7 10 7 12 25 17 17 17 17 17 17 17 17 17 17

4 17 14 11 21 21 21 21 21 21 21 21 21 21 21 21

5 6 28 25 28 12 28 28 28 28 28 28 28 28 28 28

6 7 21 23 28 23 23 23 23 23 23 23 23 23 23 23

7 24 16 28 17 23 12 31 31 31 31 31 31 31 31 31

8 14 1 32 31 10 31 12 12 12 12 12 12 12 12 12

9 4 13 23 3 31 10 10 10 10 10 10 10 10 10 10

10 12 24 12 11 3 1 1 3 1 3 1 1 3 1 1

11 16 23 31 24 18 3 3 1 3 1 3 3 1 3 3

12 28 21 1 18 1 16 18 11 11 11 11 16 11 11 11

13 1 4 3 26 32 24 11 16 16 16 16 11 16 16 16

14 22 31 14 16 24 11 24 18 24 24 24 24 24 24 24

15 31 18 13 32 11 18 16 24 18 6 6 18 18 18 18
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The results shown in Table 4.1 show that the ranking of the different projects varies widely

depending on the number of iterations carried out. An example of this is project number

7, whose position in the rankings fluctuates considerably. Another example is project 30, it

is ranked first when 26 to 30 iterations are performed, but only appears in the top fifteen

after 24 iterations. In fact, when the number of iterations are from 15 to 21, project 30 is

the worst ranked of all the projects, and ends up being ranked 29th when a relative gap of

0.01 is used as the stopping criterion.

Looking at Table 4.2, it can be seen that the rankings obtained using a relative gap of

0.01 are the same as the “ultimate” or final equilibrium assignments. The final equilibrium

results were obtained by using a large number of iterations and very small values for the

relative and normalized gaps as stopping criteria. For relative gaps of 0.02 and 0.03, the

rankings of some projects (1 and 3, 11 and 16) alternate in the rankings. As can be seen

from Table 4.3 the benefit-cost ratios of these projects are almost identical when small

values are used for the relative gap and that therefore these differences are insignificant.

With a relative gap of 0.04 the differences in the rankings become more pronounced (project

6 appears in the top 15 and there are more differences further down the rankings.

Table 4.3 shows the Benefit-Cost ratios for the top 15 projects that are obtained when

different values are used for the relative gap as the stopping criterion. In Figure 4.4, the

benefit-cost ratios for the top 12 projects are shown for when different values of relative

gap are used as the stopping criterion. It can be seen that the benefit-cost ratios are fairly

stable up to a relative gap of 0.03, after which they begin to fluctuate. This fluctuation

becomes large for relative gap values of greater than 0.1.

Table 4.3: Benefit-Cost Ratios of Projects Using Different Values for Relative Gap as
Stopping Criteria

Final Proj Ult 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.10 0.20 0.30 0.40 0.50
Rank No.

1 25 5.83 5.90 5.98 6.15 6.09 5.93 6.30 6.10 6.09 6.36 5.69 5.44 7.48 8.40
2 7 5.39 5.42 5.44 5.50 5.60 5.47 5.70 5.55 5.64 5.60 6.43 5.91 5.13 4.84
3 17 4.65 4.66 4.65 4.78 4.65 4.46 4.59 4.40 5.30 5.06 5.69 3.22 5.41 8.30
4 21 3.94 3.91 3.90 3.95 3.97 3.93 4.09 4.16 4.04 3.86 3.94 3.87 3.06 3.96
5 28 3.90 3.77 3.77 3.77 3.65 3.73 3.72 3.48 3.60 3.82 3.62 3.58 4.49 6.58
6 23 3.52 3.50 3.53 3.56 3.59 3.48 3.60 3.50 3.55 3.65 3.51 3.38 2.95 5.19
7 31 3.22 3.20 3.18 3.22 3.21 3.23 3.26 3.27 3.24 3.28 3.11 2.55 3.61 4.39
8 12 3.10 3.11 3.17 3.15 3.16 3.09 3.25 3.12 3.20 3.29 3.87 4.90 4.10 3.52
9 10 2.88 2.83 2.76 2.85 3.15 2.81 2.75 2.69 2.75 3.09 3.25 0.37 4.35 6.21
10 1 2.53 2.55 2.43 2.48 2.49 2.27 2.50 2.37 2.64 2.74 1.78 0.73 2.98 5.88
11 3 2.46 2.46 2.47 2.47 2.48 2.46 2.48 2.48 2.47 2.49 2.47 2.44 2.63 2.59
12 11 1.95 1.96 1.98 1.87 2.07 1.82 2.12 2.13 1.89 1.72 1.32 2.31 2.64 3.04
13 16 1.94 1.90 1.84 1.88 1.97 1.78 1.94 2.04 1.75 2.14 0.95 0.94 0.65 4.81
14 24 1.77 1.76 1.72 1.80 1.85 1.69 1.70 1.61 1.85 1.73 1.39 2.20 0.81 3.05
15 18 1.38 1.37 1.33 1.39 1.37 1.26 1.55 1.82 2.22 1.66 1.93 1.10 1.77 2.48

The results shown in Tables 4.1 to 4.3 and Figure 4.4, and discussed above, therefore appear

to confirm the conclusions of Boyce et al. [8]. However, there may be cases where time

limitations justify the use of slightly less stringent stopping criteria (a relative gap of 0.02
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Figure 4.4: Benefit-Cost Ratios for the Top 12 Projects Using Different Stopping Criteria)

or 0.03). The question of time requirements will be addressed later in this chapter.

Table 4.4 shows the final rankings for some projects that were not in the final top 12 as

well as the highest ranking that they achieved when using different stopping criteria.

The results shown in Table 4.4 show that there can be a large difference between the final

ranking and the highest ranking of a project when different stopping criteria are used. For

example, projects 5, 19 and 30 were all the top ranked project at some point. However,

their final rankings were 31, 32 and 29 respectively. In other words three out of the four

worst projects were ranked number one at some stage. This illustrates the importance of

using small values of relative gap as the stopping criterion when using assignment results

in the economic evaluation of projects.

As a matter of interest, Table 4.5 shows a comparison of the results obtained using LeBlanc’s

network [40] where the equilibrium coditions can be computed analytically. As in LeBlanc’s

example, a total demand of 6 units were assigned to the network. The results for the flow

on the added link (computed to be 2) and the travel time on the route including the added

link (computed to be 367.4) are compared.
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Table 4.4: Projects not Ranked in Top 12

Project No. Final Final B/C Ratio Highest Stopping Criterion
Ranking Ranking at Highest Ranking

2 21 0.46 5 R Gap = 1.40

4 20 0.59 5 R Gap = 1.80

5 31 -0.32 1 25 Iterations

6 16 1.37 5 R Gap = 1.20

14 24 0.37 4 R Gap = 1.55

19 32 -1.26 1 R Gap = 1.60

24 14 1.77 2 R Gap = 1.40

4 20 0.59 5 R Gap = 1.80

30 29 -0.01 1 26 to 30 Iterations

32 25 0.36 3 27 to 30 Iterations

Table 4.5: Effect of Using Different Values of Relative Gap on LeBlanc’s Network

Relative Gap No. of Iterations Volume on new link Time on new route

1.00 10 2.013861 369.62808

0.50 12 2.007315 368.57338

0.20 15 2.002823 367.85223

0.10 17 2.001499 367.64002

0.05 20 2.000581 367.49289

0.02 22 2.000309 367.44939

0.01 25 2.000120 367.41914

0.00 48 2.000007 367.40113

4.3.2 The effect of stopping criteria on the correlation between modelled

volumes and traffic counts

As shown above, in order to obtain stable assignment results to be used in the financial

evaluation of projects it is necessary to use very small values of the relative gap for the

stopping criterion. However, many traffic assignments are used to provide traffic volumes

that are used to assist engineers in the design of new facilities. The question therefore is

what stopping criterion would be suitable to provide reliable information for this purpose.

One way of doing this would be to compare assigned volumes with traffic counts. In 2000

a number of screen line counts were carried out for the calibration of a new model for

Gauteng. A total of 79 stations were counted providing 158 directional counts that could

be compared with assignments results. Once again assignments were carried out using a

wide range of number of iterations and relative gaps as stopping criteria. The results of this

investigation are summarized in Table 4.6 (I = number of iterations, RG = relative gap).

The results shown in Table 4.6 indicate that the degree of convergence of the equilibrium

assignment process has virtually no effect on the correlation between modelled and counted
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Table 4.6: Regression Results: Assigned Volumes vs Traffic Counts for Different Stopping
Criteria

I = 15 I = 30 RG = 1.0 RG = 0.5 RG = 0.1 RG = 0.01

R2 0.750 0.746 0.747 0.746 0.745 0.744

Intercept 21.237 18.517 20.960 18.475 17.386 17.959

Slope 0.867 0.867 0.864 0.866 0.866 0.865

volumes. This would seem to agree with Sheffi’s statement that most of the convergence

takes place in the first few iterations. It should, however, be pointed out that many of the

screen line counts were done in rural and semi-rural areas where there is little congestion.

Different results may have been obtained if more counts in congested city areas had been

used.

The fact that the degree of convergence has little or no effect when comparing modelled with

counted volumes and yet has a significant effect in the finacial evaluation of projects can

be explained as follows. Consider a road operating at or near its capacity of 4000 vehicles

per hour. A difference of plus or minus 100 vehicles would have a very small effect on the

regression coefficients shown in Table 4.6 with 158 points being considered. However, the

same differences would have a much larger effect on the total time travelled since the road

would be operating at the steep section of its link performance function as shown in Figure

1.1.

The results shown in Table 4.6 appear to show that, when compared with counts, a relatively

small number of iterations are sufficient to provide reliable estimates of traffic volumes.

However, it should be remembered that only a small proportion of the total number of

links are included in the comparison. The question that then arose was: how close to the

final equilibrium volumes are the link volumes when different stopping criteria are used?

It was thought that it would be useful to produce a table that would provide modellers

with an idea of the level of confidence they could have in their results compared to the final

equilibrium solution.

In order to obtain answers that might be generally applicable, it was decided to test more

than a single scenario. Two different models were used, the 1985 PWV Study and the 1991

Vectura Study (Gautrans) models. Although both models modelled the same area, they are

different models having different volume delay functions and matrices. As a result, their

convergence characteristics are quite different. In addition, six different scenarios using

each model were investigated. These different scenarios were obtained by using different

networks and different matrices to give different congestion levels (e.g. matrices for 1985,

2000 and 2010 were assigned to the 2000 network). The results of this analysis are shown

in Table 4.7.

An example of how Table 4.7 should be understood is that with a relative gap of 0.5,

94.9 per cent of the links will have assigned volumes within 10 per cent of those for the
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final equilibrium solution. It is believed that this table could provide modellers with an

indication of the stopping criterion to use so as to obtain a required level of confidence in

their results.

Table 4.7: Cumulative Percentage Within Given Percentage of “Equilibrium” Link Volumes

Cum % RG=1.0 RG=0.5 RG=0.4 RG=0.3 RG=0.2 RG=0.1 RG=0.05 RG=0.01

0 19.2 23.4 25.0 27.4 30.8 37.7 45.8 69.6

1 45.0 55.5.4 59.0 64.0 70.5 80.5 88.3 97.3

2 61.5 71.9 74.9 79.1 83.7 90.2 94.5 98.9

5 82.1 88.4 90.0 92.0 94.1 96.7 98.3 99.7

10 91.8 94.9 95.7 96.7 97.6 98.7 99.4 99.9

25 97.5 98.5 98.7 99.1 99.4 99.7 99.8 100

50 99.0 99.4 99.6 99.7 99.8 99.9 99.9 100

100 99.6 99.8 99.8 99.9 99.9 100 100 100

Table 4.6 indicates that the stopping criterion used has very little effect on the correlation

between counts and assigned volumes. However, Table 4.7 shows that if one wants the

assigned volumes to be near the equilibrium volumes then more stringent stopping criteria

should be used. Since modellers generally refer to the results as being from an equilibrium

assignment they should be fairly close to the actual equilibrium solution. For design pur-

poses, it is not necessary that they be very close, a relative gap of 0.1 or 0.2 would be

probably be sufficient since that would mean that approximately 95 per cent of the link

volumes are within five per cent of the equilibrium solution.

The results obtained using the number of iterations as the stopping criteria varied much

more widely between the different scenarios tested than did those using relative gap. This

suggests that relative gap should rather be used as a stopping criterion since it is more

likely to result in similar degrees of convergence for different models.

4.3.3 Computational effort

The equilibrium assignment process is an iterative process and the improvement resulting

from each successive iteration gets progressively smaller. Therefore, the relationship bet-

ween the relative gap and the number of iterations is not a linear one. Table 4.8 shows the

time taken to achieve different relative gaps. It should be noted that these are specific to

the Gautrans Model as it existed at the time of the investigation, (668 zones, 7326 nodes

including centroids and 18133 links), and the computer on which the model was run (1.20

Ghz processor). However, the table could be used to give a modeller an indication of the

times required once they had done an assignment using one of the stopping criteria, for

example relative gap = 0.5. Boyce et al. [8] stated that they thought that a reasonable

solution time for a large scale network would be an overnight run, or up to 12 - 14 hours.

Using the EMME/2 macro language it is easy to test a number of alternatives overnight or

over a weekend.
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Table 4.8: Computational Effort Required for Different Stopping Criteria Gautrans Model

Relative Gap No. of Iterations Time (min:sec)

1.90 15 0:56

0.50 40 2:24

0.40 45 2:42

0.30 55 3:16

0.20 72 4:16

0.10 113 6:44

0.05 184 10:58

0.04 218 13:26

0.03 275 16:28

0.02 376 22:12

0.01 692 40:10

4.4 Conclusions and Recommendations

Bloy reached the following conclusions from his [6], [7] investigation:

• Modellers should be very wary about using default values for stopping criteria when

doing assignments.

• An objective measure such as the relative gap is preferable to the number of iterations

as a stopping criterion.

• Different stopping criteria can be used depending on the purpose of the assignment

(economic evaluation or inputs for design).

• The speed of modern computers means that doing extra iterations is no longer the

drawback that it used to be.

Bloy [6], [7] made the following recommendations:

• When doing assignments where the results will be used in economic evaluation, a

relative gap of 0.01 is the most appropriate stopping criterion.

• If the results of the assignment are to be used as input in the design of roads, the

values contained in Table 4.8 should be used as an indication of the relative gap

needed to provide the required confidence that the results are close to the equilibrium

solution.

Blaschuk and Hunt [5] tested different values of relative gap in the range 0.01 to 0.10 and

compared the total vehicle hours travelled on the network and the volumes on a few selected

links on a model for Calgary in Canada. They recommended that a relative gap of 0.01
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be used for both economic evaluation and link volumes for design purposes. They did,

however, qualify the recommendation for link volumes for design purposes by saying that

a relative gap of 0.05 could be used in order to save time.
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Chapter 5

NEW INVESTIGATIONS INTO

BRAESS’ PARADOX

5.1 How Often Does Braess’ Paradox Occur?

As explained in Chapter 3 tests were done using data from the 1985 PWV Update Study.

In this study which had 1985 as the base year, a network was developed for the year 2000.

This was done by adding road improvements for each year from 1988 to 2000. In the tests,

the results of which follow, each year was tested separately by assigning a matrix which

was derived by interpolating between the matrices which had been developed as part of the

study for the years 1985 and 2000.

For each year the road improvements for that year as well as for the preceding years were

tested to see whether they resulted in Braess’ paradox or not. For example, there were 23

road projects for 1988 and another eight were added for 1989, all 31 projects were then

tested for 1989. The reason for doing this was to check to see whether any of the projects

for 1988 showed Braess’ paradox in later years.

The results of this testing are shown in Tables 5.1 to 5.8 for different stopping criteria. The

tables contain the following information: the number of road improvement projects (either

new roads or additional lanes), the number of projects showing Braess’ paradox, the largest

Braess’ paradox (the largest reduction in total vehicle-hours resulting from the removal of

a project), and a list of the projects showing Braess’ paradox together with the magnitude

of the Braess’ paradox in parenthesis. For conciseness, the projects have been numbered

rather than giving a description.

The following statements can be made after examining the results given in Tables 5.1 to

5.8:

• The results obtained when using a stopping criterion of 15 iterations (used by some

practitioners) are disturbing, with up to 58 per cent of the projects apparently showing
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Braess’ paradox (in 1996).

• In general, the number of projects apparently showing Braess’ paradox decreases as

the stopping criterion becomes more stringent (there are some exceptions to this).

• The magnitude of the decrease in total vehicle-hours (the size of the apparent Braess’

paradox) tends to decrease as the stopping criterion becomes more stringent. Once

again there are exceptions to this.

• The number of projects showing Braess’ paradox does not appear to be monotonic

or proportional to the number of projects being considered. As an illustration of this

consider the following extract from Table 5.8:

Year No. of Projects No. of Braess’ Projects
1992 48 2
1993 77 5
1994 91 2
1995 107 0

• A project which shows Braess’ paradox in one or more years, may not show it in

succeeding years, e.g. project number 76 in 1993 and 1994 with relative gap = 0.01

as the stopping criterion shows the paradox but does not in later years. This shows

that the addition of further roads may result in a “better” network with less cases of

Braess’ paradox.

• As described in Chapter 4, it is better to use a more stringent stopping criterion

such as the relative gap = 0.01 when doing financial type analyses such as checking

for Braess’ paradox. This implies that the results are nearer the true equilibrium

condition than would otherwise be the case.

• Valiant and Roughgarden [59] proved that for large random networks with linear

delay functions and a single origin-destination pair, Braess’ paradox occurs with high

probability (see Section 2.4.2).

The analysis shown here, particularly in Table 5.8, shows that under certain flow and

network conditions examples of Braess’ paradox are likely to occur in sets of road network

improvements.
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Table 5.1: Braess’ Paradox in 1985 Update Study with 15 Iterations

Year No. of Projects No. of Braess’ Largest Braess’ Braess’ Projects

Projects Paradox (size of paradox)

1988 23 3 27 2(7); 3(3); 11(27)

1989 31 1 13 18(13)

1990 44 7 31 8(9); 10(9); 18(14); 29(31); 33(6)

37(2); 38(3)

1991 48 12 18 4(4); 8(10); 18(12); 19(10); 20(9); 28(2)

29(17); 34(4); 38(2); 44(7); 45(18); 49(5)

1992 64 28 62 1(29); 4(21); 6(9); 10(41); 11(44);

14(2); 16(12); 18(27); 19(53); 20(23)

21(24); 25(1); 29(20); 33(21); 42(11)

43(7); 45(24); 46(36); 47(6); 48(3)

49(4);51(17); 53(10); 57(38); 58(62)

60(7); 61(39); 64(14)

1993 77 19 58 3(5); 8(3); 12(7); 18(2); 20(1)

29(9); 38(7); 39(13); 43(5); 48(1)

51(3); 55(11); 58(29); 59(5); 64(11)

67(7); 71(2); 74(29); 76(58)

1994 91 6 21 54(6); 55(12); 73(9); 76(10); 86(4)

88(21)

1995 107 9 20 11(3); 18(1); 49(2); 54(3); 70(4)

79(5); 88(20); 97(4); 98(3)

1996 123 71 70 1(22); 3(23); 4(49); 6(2); 8(35)

10(30); 11(34); 12(21); 13(19); 18(20)

19(36); 20(40); 22(29); 23(21); 25(23)

28(14); 29(30); 33(21); 34(23); 37(8)

38(24); 43(29); 46(28); 48(8); 51(51)

53(32); 54(22); 55(10); 56(25); 58(47)

60(17); 61(3); 64(38); 66(5); 68(34)

70(25); 71(21); 72(10); 73(28); 74(46)

76(55); 79(10); 80(56); 81(20); 83(41)

84(39); 88(31); 89(70); 90(45); 91(32)

93(43); 94(17); 96(4); 98(26); 99(26)

100(25); 102(16); 105(21); 106(32); 109(12)

110(8); 111(10); 113(36); 114(20); 116(39)

117(38); 119(31); 120(20); 121(21); 124(39)
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Table 5.2: Braess’ Paradox in 1985 Update Study with 15 Iterations - continued

Year No. of Projects No. of Braess’ Largest Braess’ Braess’ Projects

Projects Paradox (size of paradox)

1997 148 36 30 4(17); 12(12); 20(4); 29(30); 33(20); 34(3); 38(4)

43(6) 53(18); 55(9); 58(20); 60(2); 69(2); 70(23)

71(19); 75(15); 80(7); 86(16); 88(8); 89(16)

90(5); 93(15); 97(6); 114(29); 127(14); 128(23)

129(15); 131(7); 137(21); 138(6); 140(6)

141(10); 143(23); 144(3); 145(16); 146(10)

1998 158 52 66 4(37); 10(16); 11(48); 13(13); 28(18)

38(14); 43(8); 51(17) 54(12); 55(27); 61(17)

67(5); 68(2); 69(22); 70(32); 71(17); 73(1)

76(35); 80(22); 83(35); 84(36); 86(29); 88(20)

97(16); 98(14); 102(66); 105(12); 111(4)

113(28); 114(28); 116(30); 119(9); 120(15)

124(19); 126(14); 127(52); 128(7); 129(3)

130(3); 132(5); 134(21); 139(19); 140(35)

143(23); 146(6); 147(14); 148(32); 149(5)

151(14); 153(13); 154(2); 158(46)

1999 165 42 52 4(16); 8(17); 10(3); 18(16); 20(52); 34(9)

38(28); 51(31) 55(25); 58(27); 61(22); 69(46)

74(25); 75(31); 76(20); 83(13); 84(4); 89(2)

93(5); 97(32); 98(17); 101(6); 109(10)

111(51); 114(4); 116(14); 120(1); 121(15)

125(18); 128(23); 129(10); 130(11); 131(26)

133(31); 140(9); 141(2); 144(29); 147(10)

151(8); 157(15); 161(16); 163(33)

2000 186 79 84 11(44); 19(30); 21(45); 22(23); 23(10); 25(72)

28(43); 29(25); 34(65) 35(25); 43(2); 49(35)

51(2); 53(71); 54(19); 57(2); 60(13); 61(46)

62(10); 68(1); 70(22); 71(83); 73(13); 74(26)

76(16); 79(64); 80(37); 84(40); 86(35); 88(66)

89(53); 90(64); 91(39); 93(16); 94(30); 96(1)

111(81); 113(32); 116(82); 117(79); 119(44)

122(66); 123(82); 125(21); 126(37); 131(62)

133(44); 134(36); 135(29); 137(17); 139(67)

140(66); 141(7); 142(26); 144(34); 145(38)

146(59); 149(20); 150(84); 151(58); 155(2)

157(17); 161(8); 163(80); 165(32); 168(43)

170(4); 172(10); 173(56); 174(63); 175(76)

177(69); 178(27); 180(15); 181(65); 184(54)

185(27); 186(3); 187(59)
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Table 5.3: Braess’ Paradox in 1985 Update Study with Relative Gap = 0.20

Year No. of Projects No. of Braess’ Largest Braess’ Braess’ Projects

Projects Paradox (size of paradox)

1988 23 10 27 1(10); 4(10); 8(3); 10(14); 11(14)

16(5); 18(11); 19(11); 20(27); 23(8);

1989 31 11 28 1(23); 3(13); 4(27); 10(8); 11(16); 13(3)

18(28); 19(1); 25(6); 27(11); 28(6)

1990 44 2 2 18(1); 28(2)

1991 48 11 12 3(6); 10(9); 16(3); 23(3); 27(8); 34(6)

37(2); 38(12); 44(1); 46(3); 48(87

1992 64 9 16 20(6); 24(11); 29(11); 38(3); 49(3)

51(3); 53(9); 55(16); 58(14)

1993 77 1 24 76(24)

1994 91 40 63 3(12); 4(27); 8(9); 10(1); 11(6)

13(9); 16(6); 18(11); 20(23); 23(9)

28(9); 34(23); 37(4); 38(25); 43(1)

46(3); 49(18); 51(4); 53(27); 55(6)

58(5); 60(1); 64(10); 67(7); 68(10)

69(15); 70(12); 71(13); 73(3); 74(4)

75(10); 76(63); 79(2); 80(13); 83(31)

84(19); 85(6); 86(9); 88(24); 91(22

1995 107 6 4 29(1); 58(2); 70(4); 73(2); 79(3); 89(4)

1996 123 29 16 11(8); 18(4); 20(14); 29(13); 34(11)

38(5); 51(4); 53(2); 55(8); 58(13)

69(4); 70(11); 74(14); 79(4); 80(8)

84(2); 88(11); 89(1); 90(4); 91(14)

93(4); 97(10); 98(10); 109(5); 111(16)

113(2); 114(8); 116(11); 123(9)

1997 148 14 8 38(4); 58(2); 69(2); 71(3); 79(6)

83(7); 88(2); 89(8); 100(2); 111(7)

119(6); 128(8); 129(1); 131(4)

1998 158 5 10 20(10); 71(3); 79(2); 88(2); 97(1)

1999 165 11 16 18(3); 38(16); 58(7); 79(10); 83(1); 89(12)

102(2); 144(16); 148(1); 153(1); 161(1)

2000 186 27 27 4(1); 20(27); 34(14); 38(7); 52(10)

58(3); 68(3); 69(11) 84(19); 89(14)

97(5); 102(8); 116(1); 128(18); 132(10)

136(2); 153(1); 154(4); 161(6); 163(4)

170(4); 174(10); 175(1); 176(4); 181(16)

187(15); 188(6)
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Table 5.4: Braess’ Paradox in 1985 Update Study with Relative Gap = 0.10

Year No. of Projects No. of Braess’ Largest Braess’ Braess’ Projects

Projects Paradox (size of paradox)

1988 23 8 19 1(2); 4(15); 8(18); 10(3); 16(9)

18(15); 20(19); 23(12)

1989 31 14 17 1(10); 3(8); 4(3); 5(1); 8(3)

10(4); 13(2); 16(10); 18(17); 20(4)

23(11); 25(3); 27(14); 28(10)

1990 44 9 10 8(10); 11(5); 16(6); 18(7); 20(8)

29(6); 34(7); 38(10); 40(3)

1991 48 1 7 38(7)

1992 64 1 3 20(3)

1993 77 3 40 20(1); 69(2); 76(40)

1994 91 3 24 69(3); 76(24); 83(4)

1995 107 1 1 20(1)

1996 123 0 -

1997 148 8 6 20(6); 38(6); 52(6); 67(3); 69(6)

97(2); 144(5); 148(1)

1998 158 5 5 52(2); 58(5); 128(1); 144(1); 148(3)

1999 165 1 6 88(6)

2000 186 19 12 11(1); 34(1); 38(2); 52(3); 69(1)

84(4); 89(4); 93(1) 104(8); 113(6)

128(5); 130(9); 132(9); 146(1); 148(2)

151(2); 153(3); 170(8); 181(12)

Table 5.5: Braess’ Paradox in 1985 Update Study with Relative Gap = 0.05

Year No. of Projects No. of Braess’ Largest Braess’ Braess’ Projects

Projects Paradox (size of paradox)

1988 23 4 11 16(1); 18(11); 20(8); 23(4)

1989 31 3 5 4(1); 18(5); 27(4)

1990 44 0 -

1991 48 2 3 29(1); 49(3)

1992 64 0 -

1993 77 4 44 34(1); 38(3); 71(3); 76(44)

1994 91 1 27 76(27)

1995 107 6 3 34(1); 38(2); 68(1); 69(3); 82(3); 97(2)

1996 123 4 5 34(5); 38(3); 73(5); 113(1)

1997 148 2 3 104(1); 148(3)

1998 158 0 -

1999 165 3 3 20(2); 104(1); 148(3)

2000 186 4 3 88(3); 89(2); 170(1); 175(1)
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Table 5.6: Braess’ Paradox in 1985 Update Study with Relative Gap = 0.03

Year No. of Projects No. of Braess’ Largest Braess’ Braess’ Projects

Projects Paradox (size of paradox)

1988 23 4 7 4(1); 16(1); 18(7); 20(5)

1989 31 3 4 18(4); 20(1); 27(1)

1990 44 0 -

1991 48 2 2 29(1); 49(2)

1992 64 4 4 20(1); 34(4); 38(1); 58(1)

1993 77 4 42 38(2); 69(1); 74(1); 76(42)

1994 91 1 33 76(33)

1995 107 9 4 34(2); 38(1); 52(2); 58(2); 69(2)

83(1); 88(1); 89(4) 103(1)

1996 123 2 4 38(1); 73(4)

1997 148 3 1 89(1); 130(1); 144(1)

1998 158 11 5 34(2); 38(4); 58(1); 69(1); 89(5); 104(4)

128(1); 130(3); 144(2); 148(2)

1999 165 1 2 58(2)

2000 186 7 3 20(1); 36(1); 52(2); 88(2); 89(1)

128(2); 153(3)

Table 5.7: Braess’ Paradox in 1985 Update Study with Relative Gap = 0.02

Year No. of Projects No. of Braess’ Largest Braess’ Braess’ Projects

Projects Paradox (size of paradox)

1988 23 2 7 18(7); 20(3)

1989 31 2 4 18(4); 20(1)

1990 44 5 4 20(1); 28(4); 29(2); 34(2); 38(4)

1991 48 0 -

1992 64 2 1 20(1); 38(1)

1993 77 3 38 20(1); 38(1); 76(38)

1994 91 2 34 76(34); 89(1)

1995 107 0 -

1996 123 5 3 27(1); 36(2); 38(1); 52(3); 73(3)

1997 148 2 4 38(1); 73(4)

1998 158 2 1 58(1); 128(1)

1999 165 5 2 20(2); 52(2); 58(1); 88(1); 153(1)

2000 186 8 2 27(1); 36(1); 52(1); 128(2)

130(1); 148(1); 153(1); 175(2)
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Table 5.8: Braess’ Paradox in 1985 Update Study with Relative Gap = 0.01

Year No. of Projects No. of Braess’ Largest Braess’ Braess’ Projects

Projects Paradox (size of paradox)

1988 23 1 2 18(2)

1989 31 2 6 18(6); 20(1)

1990 44 4 1 20(1); 29(1); 34(1); 38(1)

1991 48 5 2 20(2); 28(1); 29(2); 34(1); 38(1)

1992 64 2 1 20(1); 29(1)

1993 77 5 40 27(2); 38(1); 52(1); 69(1); 76(40)

1994 91 2 35 20(1); 76(35)

1995 107 0 -

1996 123 1 1 73(1)

1997 148 0 -

1998 158 1 1 58(1)

1999 165 1 2 58(2)

2000 186 3 1 27(1); 36(1); 128(1)
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5.2 Range Where Braess’ Paradox Occurs

5.2.1 Some Theoretical Analysis

Pas and Principio [45] analysed the original Braess network and derived a range of values

of the total demand on the network for which Braess’ paradox would occur. They also

produced Figure 2.16 showing how the flows on the different paths in the network varied

when the total demand on the network increased.

The link performance functions in the Braess network were linear (see Figure 1.4) and all

the lines in Figure 2.16 were also linear. In order to test what happens when the link

performance functions are non-linear, a similar figure was produced for the network shown

by LeBlanc in his paper [40], (see Figure 2.7). The results of this analysis are shown in

Figure 5.1. It can be seen from Figure 5.1 that initially all of the flow in path 3 and the

line representing this flow and the demand is linear. Once flow starts being loaded onto

paths 1 and 2, the flow on the paths is no longer linear. Unlike the Pas and Principio

example using Braess’ network, there is flow on path 3 after Braess’ paradox no longer

occurs. Although Figure 5.1 shows the flow on path 3 decreasing, it does reach a point

where it starts to increase again. Braess’ paradox occurs for demand values from 2.86 to

7.45 in this example.

0 1 2 3 4 5 6 7 8 9 10

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Paradox

Occurs

Flow on routes 1 & 2

Flow on route 3

Demand

Route

Flows

Figure 5.1: Route flows as a function of demand - LeBlanc’s example

In both of the networks from the Braess and Leblanc examples, the link performance

functions are functions of only the flow on the links and the capacity of the links is not

taken into account. It was therefore not possible to determine the levels of congestion at
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which Braess’ paradox occurred.

In order to obtain some idea as to whether it is necessary to have high levels of congestion,

we have constructed a simple network that uses the link performance functions from a real

world model. This network is shown in Figure 5.2 and the details of the links are provided

in Table 5.9.

The link performance functions were according to the Bureau of Public Roads (BPR)

formula which has the following form:

t = t0

[

1 + a
(

x
cp

)b
]

where:

t = travel time under congested conditions

t0 = free flow travel time

x = assigned link volume

cp = practical capacity, = 0.75 of the nominal capacity

a, b = constants, values of 0.15 and 4 were used

Table 5.9: Link characterstics

Link Length (km) Free flow speed (km/h) Capacity (vph)

1 1.56 60 830

2 1.56 60 830

3 0.75 70 920

4 0.75 70 920

5 1.56 110 1110

A plot similar to that produced by Pas and Principio is shown in Figure 5.3. In this case

Braess’ paradox occurs for total demand, Q, between 508.25 and 873.99 vehicles per hour.

Figure 5.3 has the same general form as Figure 5.1 for the LeBlanc network. Similarly to

the discussion about Figure 5.1, the flow on path 3 decreases until it reaches a minimum

and then starts to increase at higher volumes than shown in Figure 5.3.

Figure 5.3 and the range of 508.25 and 873.99 were derived using the EMME/2 computer

program and using different values for Q. This can also be done analytically by substituting

the values from Table 5.9 in the BPR formula and computing the link travel times as follows:

For the augmented 5-link network

Assume that the total flow on the networks is Q and that the flow using link 5 in the

augmented network is P on the network shown in Figure 5.2.

Then the times on the various links are as follows:

t1 = t01

[

1 + 0.15
(

0.5Q−0.5P
0.75×830

)4
]
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Figure 5.2: Braess type network with BPR link performance functions

t2 = t02

[

1 + 0.15
(

0.5Q−0.5P
0.75×830

)4
]

t3 = t03

[

1 + 0.15
(

0.5Q+0.5P
0.75×920

)4
]

t4 = t04

[

1 + 0.15
(

0.5Q+0.5P
0.75×920

)4
]

t5 = t05

[

1 + 0.15
(

5P
0.75×1110

)4
]

where t0n in the free flow travel time on link n

Then the time on route 1 is

t1

[

1 + 0.15
(

0.5Q−0.5P
0.75×830

)4
]

+ t4

[

1 + 0.15
(

0.5Q+0.5P
0.75×920

)4
]

= 1.56

[

1 + 0.15
(

0.5Q−0.5P
622.5

)4
]

+ 9
14

[

1 + 0.15
(

0.5Q+0.5P
690

)4
]
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Figure 5.3: Route flows as a function of demand - BPR example

The time on route 3 is

t3

[

1 + 0.15
(

0.5Q+0.5P
0.75×920

)4
]

+ t5

[

1 + 0.15
(

P
0.75×1110

)4
]

+ t4

[

1 + 0.15
(

0.5Q+0.5P
0.75×920

)4
]

= 2

{

9
14

[

1 + 0.15
(

0.5Q+0.5P
690

)4
]}

+ 9.36
11

[

1 + 0.15
(

P
832.5

)4
]

(links 3 and 4 are

identical)

At equilibrium the time on route 1 is equal to the time on route 3 (also on route 2), therefore

1.56

[

1 + 0.15
(

0.5Q−0.5P
622.5

)4
]

+ 9
14

[

1 + 0.15
(

0.5Q+0.5P
690

)4
]

= 2

{

9
14

[

1 + 0.15
(

0.5Q+0.5P
690

)4
]}

+ 9.36
11

[

1 + 0.15
(

P
832.5

)4
]

or

9.36
11

[

1 + 0.15
(

P
832.5

)4
]

+ 9
14

[

1 + 0.15
(

0.5Q+0.5P
690

)4
]

− 1.56

[

1 + 0.15
(

0.5Q−0.5P
622.5

)4
]

= 0

The above expression was simplified using Maxima to produce the following expression

(approximately):

−7.0807173805064854E − 14Q4 + 4.9593451575338179E − 13Q3R

−4.24843042830389E − 13Q2R2 + 4.9593451575338179E − 13QP 3

+1.9492090885609397E − 13P 4 − 0.066233766233766

= 0
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Different values of Q can be inserted in the above equation and the equation solved to

provide the corresponding value of P at equilibrium. These values of Q and P can then be

used to calculate the travel times on all five links and thus the whole network.

The total travel time on the network is obtained by summing the travel times on all the

links, i.e.

t01

[

1 + 0.15
(

0.5Q−0.5P
0.75×830

)4
]

+t02

[

1 + 0.15
(

0.5Q−0.5P
0.75×830

)4
]

+t03

[

1 + 0.15
(

0.5Q+0.5P
0.75×920

)4
]

+t04

[

1 + 0.15
(

0.5Q+0.5P
0.75×920

)4
]

+ t05

[

1 + 0.15
(

5P
0.75×1110

)4
]

= 1.56

[

1 + 0.15
(

0.5Q−0.5P
622.5

)4
]

+1.56

[

1 + 0.15
(

0.5Q−0.5P
622.5

)4
]

+ 9
14

[

1 + 0.15
(

0.5Q+0.5P
690

)4
]

+ 9
14

[

1 + 0.15
(

0.5Q+0.5P
690

)4
]

+ 9.36
11

[

1 + 0.15
(

P
832.5

)4
]

= 3.12

[

1 + 0.15
(

0.5Q−0.5P
622.5

)4
]

+ 9
14

[

1 + 0.15
(

0.5Q+0.5P
690

)4
]

+ 9.36
11

[

1 + 0.15
(

P
832.5

)4
]

The original 4-link network

For a total flow of Q on the network, the total travel time on the network is

t01

[

1 + 0.15
(

0.5Q
0.75×830

)4
]

+ t02

[

1 + 0.15
(

0.5Q
0.75×830

)4
]

+t03

[

1 + 0.15
(

0.5Q
0.75×920

)4
]

+ t04

[

1 + 0.15
(

0.5Q
0.75×920

)4
]

= 3.12

[

1 + 0.15
(

0.5Q
622.5

)4
]

+ 9
7

[

1 + 0.15
(

0.5Q
690

)4
]

The existence of Braess’ Paradox

Whether Braess’ Paradox exists for a particular value of Q or not, can be tested by sub-

tracting the total time for the 4-link network from the total time for the original augmented

5-link network. If the result is positive then Braess’ Paradox occurs (the travel time on the

augmented network is greater than the travel time on the original network).

Analytically this can be expressed as follows:

3.12

[

1 + 0.15
(

0.5Q−0.5P
622.5

)4
]

+ 9
14

[

1 + 0.15
(

0.5Q+0.5P
690

)4
]

+ 9.36
11

[

1 + 0.15
(

P
832.5

)4
]

−3.12

[

1 + 0.15
(

0.5Q
622.5

)4
]

− 9
7

[

1 + 0.15
(

0.5Q
690

)4
]

= 0

Once again this this can be simplified using Maxima to obtain (approximately):
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−1.2837330021324927E − 11Q4 − 6.728103007070801E − 13PQ3

+1.3282741818603035E − 12P 2Q2 − 6.728103007070801E − 13P 3Q

+2.2140560311831672E − 13P 4 + 3.328051948051948

= 0

The equation derived previously to obtain P for different values of Q for Figure 5.3 can be

used and the values for P and Q inserted in the above expression to see whether Braess’

paradox exists or not for different values of Q. If the above expression is positive then

Braess’ paradox exists for that particular value of Q.

A common measure of the level of congestion on a road is the volume/capacity (V/C) ratio.

The V/C ratios on the different links at which Braess’ paradox occurs are given in Table

5.10. The statistics in Table 5.10 show that in this particular case Braess’ paradox occurs

at relatively low levels of congestion. A V/C ratio of 0.68 equates to a level of service of C

where a level of service of D, although somewhat congested, is considered to be acceptable.

Table 5.10: Link flows and V/C ratios at which Braess’ paradox occurs

Link Capacity (vph) Flow where V/C Flow where V/C
paradox starts paradox ends

1 830 0 0 245.15 0.30

2 830 0 0 245.15 0.30

3 920 508.25 0.55 628.85 0.68

4 920 508.25 0.55 628.85 0.68

5 1110 508.25 0.46 383.71 0.35

Another way of representing the range of values for the total demand where Braess’paradox

occurs is shown in Figure 5.4. In this figure the difference in costs on the original network

and the augmented network is plotted against the total demand. If this difference is nega-

tive, i.e. the cost on the augmented network is higher than the cost on the original network,

then Braess’ paradox occurs.

Figure 5.5 shows the three paths traffic can follow in the augmented network (paths 1 and

2 are also the paths that are used in the original network).

If one considers the paths shown in Figure 5.5, then it is obvious that, due to symmetry,

the flows on paths 1 and 2 will be equal at equilibrium (the lengths and capacities of these

links are the same).

In the case of the original network, the flows on all the links will be 0.5Q.

In the case of the augmented network, if the flow on link 5 is P (i.e. on path 3), then the

flows on the various links are as follows:

Link1 = 0.5Q − 0.5P
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Figure 5.4: Cost on original network - cost on augmented network

Link2 = 0.5Q − 0.5P

Link3 = 0.5Q + 0.5P

Link4 = 0.5Q + 0.5P

Link5 = P

With the additional link in the augmented network, links 3 and 4 carry more flow than they

would have in the original network (if there is any flow on path 3). Therefore, for Braess’

paradox to occur the additional cost caused by the extra loading on links 3 and 4 exceeds

the reduced costs by having lower loads on links 1 and 2 and the new link.

As a result of the above, increasing the capacity of links 3 and 4 should reduce the proba-

bility of Braess’ paradox occurring. This was tested by increasing the capacity of links 3

and 4 in steps of ten per cent of their original capacities. This was found to be the case,

with the range of values over which Braess’ paradox decreasing until it no longer occurred.

The results of this analysis are shown in Figure 5.6 and Table 5.11.

Figure 5.6 was derived using the EMME/2 computer software. However, it is possible

to derive the family of curves shown in Figure 5.6 analytically. This can be done by for

different values of Q and by substituting 0.75 times the different capacities in place of 690

in the formulae discussed in connection with Figure 5.3.
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Figure 5.5: Paths through the augmented network shown in Figure 5.2

Table 5.11: Link flows at which Braess’ paradox occurs for different capacities on links 3
and 4

Capacity (vph) Flow where Flow where
paradox starts paradox ends

920 508.25 873.99

1012 548.59 831.02

1104 584.92 780.97

1196 617.04 726.01

1288 644.91 667.33
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Figure 5.6: Cost on original network - cost on augmented network for different capacities
on links 3 and 4
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5.2.2 A Real-World Network

An attempt was made to determine whether Braess’ paradox occurs over a range of values

in a real world network. Once again data from the 1985 PWV Update Study [47] was used.

In the first test, the entire trip matrix was multiplied by a range of factors and the effect of

removing projects from the network was tested using the resulting matrices. This exercise

was carried out for the 1989, 1993 and 1999 networks and matrices. For the 1989 and 1993

networks and matrices, the range of factors used was from 0.5 to 3.0. In the case of the

1999 networks and matrices, the factors ranged from 0.5 to 2.5 since it had been observed

in the other two cases that any pattern that there was in the results had been established

by then.

The complete set of results for the three years is shown in the Appendix of this dissertation.

Tables 5.12 to 5.14 below show the results using selected projects from the three years. The

projects in these tables were selected so as to give a good representation of the different

types of results obtained. In these tables a negative value indicates the occurrence of Braess’

paradox.

The results for selected projects in 1989 are shown in Table 5.12.

Looking at the results shown in Table 5.12 enables one to make the following observations:

• Project 4 starts by exhibiting Braess’ paradox (difference = -1) when a factor of 0.5 is

used. When the original matrix is multiplied by a factor of 0.6 there is no difference

between the networks. For factors larger than 0.6 the differences are larger than zero

and show a generally increasing trend (no Braess’ paradox).

• Project 23 shows no Braess’ paradox initially but does show the paradox when a factor

of 0.7 is used. For larger factors there is no Braess’ paradox with the differences

showing an increasing trend. This suggests part of the “sinusoidal-shaped” curve

shown in Figure 5.4.

• Some projects show a steady increase in the difference in travel times as the number

of trips increases (projects 7, 13 and 14).

• Project 8 starts with a zero difference, the difference then increases to a local maxi-

mum (factor = 0.7) after which it decreases to a local minimum (factor = 0.8). After

reaching a local minimum the difference then show a steady increase. Although there

are no negative differences indicating Braess’ paradox, a plot of the difference va-

lues would produce a “sinusoidal-shaped” curve similar to that shown in Figure 5.4.

Projects 10 and 25 show similar results.

• Apart from with a factor of 0.6, project 18 shows Braess’ paradox with the size of

the paradox generally increasing as the size of the factor by which the original matrix

was multiplied increases.
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Table 5.12: 1989: Differences with and without projects when trip matrix is multiplied by
a factor

Projects
Factor 4 7 8 10 13 14 18 23

0.5 -1 10 0 0 0 14 -1 0

0.6 0 19 3 3 1 23 0 0

0.7 2 27 5 1 4 29 -3 -1

0.8 1 34 1 0 6 33 -4 0

0.9 2 47 2 2 11 44 -3 0

1.0 4 57 7 9 15 48 -6 2

1.1 6 71 8 14 25 58 -6 3

1.2 6 90 16 19 33 79 -7 5

1.3 6 97 29 30 42 84 -9 8

1.4 6 111 37 43 54 96 -8 11

1.5 11 150 56 66 77 119 -13 16

1.6 16 172 81 82 95 136 -15 23

1.7 17 236 100 110 109 162 -12 29

1.8 22 257 111 153 148 173 -32 38

1.9 41 283 164 168 185 203 -36 53

2.0 72 346 202 203 218 233 -12 77

2.1 74 400 238 240 271 259 -21 100

2.2 85 457 282 295 333 307 -23 110

2.3 116 557 393 369 425 353 -29 167

2.4 143 667 466 450 512 438 -57 235

2.5 161 750 548 527 621 520 -75 285

• While the size of the differences show general trends there is some oscillation. It is

thought that this could be due to the fact that the links in question are being used

by trips between more than one origin-destination pair. In addition, as the number

of trips in the matrix increases, additional O-D pairs may be served by the links as

trips are diverted to new routes due to increasing congestion.

Table 5.13 shows the results for selected projects for the 1993 network and trip matrix.

Most of the examples shown in Table 5.13 show Braess’ paradox for some of the smaller

factors, but the paradox then disappears as the size of the factors used increases. In

addition, some of the examples initially show no paradox for a factor of 0.5, but as the

size of the factor then increases, Braess’ paradox occurs over a short range before no longer

occurring (projects 38, 69 and 70). This suggests the existence of the “sinusoidal-shaped”

curve shown in Figure 5.4.

In the case of project 5, there is no Braess’ paradox and the improvement brought about by

including the project increases steadily as the size of the factor increases. Project 76 always

shows Braess’ paradox and the magnitude of the paradox shows a generally increasing trend.
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Table 5.13: 1993: Differences with and without projects when trip matrix is multiplied by
a factor

Projects
Factor 5 18 34 38 58 67 69 70 76

0.5 3 -2 0 0 -3 -2 0 1 -9

0.6 5 -1 0 -2 2 2 0 -1 -12

0.7 12 2 1 -1 0 4 -1 3 -16

0.8 17 4 0 -1 0 6 0 0 -21

0.9 23 4 0 -1 -1 5 0 1 -28

1.0 35 10 0 -1 0 11 -1 4 -40

1.1 47 11 1 -1 0 15 0 6 -41

1.2 67 11 2 0 -1 19 0 8 -54

1.3 92 22 5 1 3 24 2 11 -57

1.4 121 21 9 1 2 30 1 19 -80

1.5 151 20 11 1 -2 37 5 21 -93

1.6 203 28 16 2 1 47 5 30 -87

1.7 260 29 17 5 1 59 11 37 -91

1.8 333 44 20 6 8 86 15 51 -96

1.9 409 47 31 4 7 108 16 64 -114

2.0 542 81 36 10 17 124 29 79 -89

2.1 639 72 46 8 26 164 38 100 -86

2.2 775 88 64 11 35 196 43 125 -66

2.3 946 77 83 8 36 279 64 139 -125

2.4 1134 149 99 14 36 313 72 176 -81

2.5 1322 176 145 17 64 385 82 229 -107

Table 5.14 shows some of the results when the network and matrix for 1989 were used in

this exercise.

Apart from project 142 which shows a steady increase in the difference values the examples

show similar results. The other selected projects all show Braess’ paradox for a range

of small factors with the paradox disappearing as the size of the factor increases. Once

again this suggests that, at least in some cases, there is evidence of the existence of the

“sinusoidal-shaped” curve that was shown in Figure 5.4.

Although the results shown in Tables 5.12 to 5.14 suggest the existence of the “sinusoidal-

shaped” curve, there was some concern that with the whole matrix being multiplied by the

factors might possibly lead to some distortion. This is because when the whole matrix is

multiplied by the factors, trips that would not normally use the routes in question might

be diverted to the routes due to congestion. Also high congestion levels on routes other

than the one being considered might mask the effects on the route in question.

A second test was therefor carried out where an attempt was made to isolate the trips

using the links in question. This was done by doing select link assignments on the specific

projects and then applying factors to only the matrices obtained from the assignment.
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Table 5.14: 1999: Differences with and without projects when trip matrix is multiplied by
a factor

Projects
Factor 3 8 34 70 76 89 102 137 142

0.5 2 5 0 3 -1 1 3 0 20

0.6 -3 -2 -3 -3 -3 -4 -1 -4 21

0.7 3 6 -1 0 8 -2 7 1 29

0.8 9 5 -1 1 14 0 9 2 35

0.9 11 17 1 4 22 1 10 5 44

1.0 21 31 2 7 21 1 8 10 51

1.1 25 45 3 11 47 0 17 16 74

1.2 26 74 5 11 40 3 21 25 92

1.3 61 93 10 18 77 9 13 41 94

1.4 77 123 13 18 102 10 15 59 108

1.5 80 171 15 37 152 10 22 92 118

1.6 96 220 33 50 178 7 33 131 132

1.7 129 268 44 72 206 7 41 142 159

1.8 171 351 69 89 311 7 60 177 205

1.9 235 498 89 118 368 12 109 220 306

2.0 336 618 111 137 410 17 144 331 384

2.1 420 770 141 190 407 26 152 390 474

2.2 480 972 167 231 390 27 192 223 582

2.3 617 1193 207 285 488 38 260 570 751

2.4 768 1449 265 372 609 49 304 700 909

2.5 900 1752 304 424 766 54 378 835 1200

These factored matrices were then combined with the remainder of the trip matrix and the

projects were tested for Braess’ paradox.

A select link assignment is a procedure where the whole matrix is assigned to the network

and during the assignment process those trips that use selected links are identified. It is

also possible to identify the matrix of trips that use the selected links.

The results of this process are shown in Tables 5.15 to 5.17 for selected projects for 1989,

1993 and 1999.

Table 5.15 shows the results for selected projects in the 1989 network. The results obtained

were similar to those obtained when using multiples of the whole matrix.

Project 18 in Table 5.15 appears to show part of the “sinusoidal-shaped” curve first shown

in Figure 5.4. With a factor of 0.5 Braess’ paradox occurs and the magnitude of the paradox

increases until at a factor of 1.1 it reaches a maximum. At higher values for the factor it

decreases until there is no Braess’ paradox when a factor 0f 1.8 is used. This is different

from the results shown in Table 5.12 where the magnitude of the Braess’ paradox kept on

increasing for project 18.
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Table 5.15: 1989: Differences with and without projects when select link matrix using the
project is multiplied by a factor

Projects
Factor 4 11 18 23 26 28 29

0.5 0 4 -3 1 3 0 1

0.6 0 4 -4 1 4 2 2

0.7 0 6 -5 0 6 2 2

0.8 0 5 -6 -1 8 1 4

0.9 3 8 -6 1 14 1 4

1.0 4 8 -6 2 19 1 3

1.1 4 9 -8 3 25 1 2

1.2 7 9 -5 3 31 3 2

1.3 7 12 -4 4 36 1 3

1.4 10 14 -4 7 44 1 4

1.5 8 14 -3 10 57 2 2

1.6 8 15 -4 13 64 1 5

1.7 10 18 -2 15 75 1 1

1.8 12 17 0 20 86 2 5

1.9 14 18 0 23 96 1 2

2.0 15 19 1 29 111 0 3

2.1 14 18 2 33 120 1 3

2.2 16 19 4 38 128 0 3

2.3 19 17 3 42 144 1 2

2.4 24 18 3 46 158 2 4

2.5 22 20 5 51 175 2 4

Table 5.16 shows the results when factors were used to multiply the select link matrices for

selected projects in 1993. All of the selected projects show Braess’ paradox at some stage.

However, the paradox no longer occurs when larger factors are used.

In the case of project 76, Braess’ paradox no longer occurs when a factor of 2.4 is used.

This differs from the case when the entire matrix is multiplied by factors where the size of

the paradox keeps on increasing (in general terms) for project 76 (see Table 5.13).

The reason for the different results for project 76 can be explained with the assistance of

Figure 5.7. Figure 5.7 shows the network in the vicinity of project 76. The roads ADE and

FDCG are freeways and HIJ is a two-lane, two-way arterial road. ABC is a new freeway

(project 76) in the new network. There is an existing interchange at D. Originally there

was an interchange between the freeway and the arterial near C. With the introduction of

the new road and a new interchange at C, the old interchange would no longer be possible

due to the proximity to C. As a result there would no longer be an interchange between

the freeway and the arterial.

When the whole matrix is multiplied by factors, the traffic not only increases on the new

freeway but also on the arterial road. Since the traffic on the arterial can no longer access
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the freeway in this area it has to remain on the arterial for a longer distance than was

the case originally. The arterial has a lower capacity than the freeway and as a result the

additional delays on the arterial exceed any benefit that might result from the inclusion of

project 76.

When only the select link matrix which uses project 76 is multiplied by factors the traffic

on the arterial remains the same. As shown in Table 5.16, initially the delays caused on the

arterial by not having access to the freeway are larger than the benefits to those using the

new freeway. Eventually with increasing volumes on the new road (when it is multiplied by

larger factors), the benefits to the freeway users outweigh the delays to the arterial users.

Table 5.16: 1993: Differences with and without projects when select link matrix using the
project is multiplied by a factor

Projects
Factor 34 38 58 67 69 70 76

0.5 -1 0 -1 0 -1 -1 -49

0.6 0 0 1 -1 0 0 -46

0.7 0 0 0 -1 0 2 -42

0.8 1 0 1 3 2 2 -43

0.9 -2 -1 -1 8 0 2 -41

1.0 0 -1 0 14 -2 2 -40

1.1 0 0 1 14 0 5 -39

1.2 1 1 3 17 1 7 -27

1.3 2 2 1 22 2 10 -23

1.4 3 2 1 29 3 10 -20

1.5 4 0 0 36 0 8 -23

1.6 8 0 -1 44 2 7 -28

1.7 7 -1 -2 52 1 11 -30

1.8 8 0 0 64 -1 12 -31

1.9 6 4 1 74 3 14 -26

2.0 9 2 2 83 3 18 -21

2.1 10 4 3 91 3 20 -15

2.2 12 2 4 104 7 19 -11

2.3 15 4 6 117 5 21 -4

2.4 13 3 9 131 7 21 7

2.5 17 4 12 140 7 27 14

Table 5.17 shows the results for 1999 when the select link matrices for selected projects are

multiplied by factors.

The following observations can be made by referring to Table 5.17 and comparing the results

with those shown in Table 5.14:

• Projects 3 and 8 do not show Braess’ paradox in Table 5.17 when only the select

link matrices are multiplied by factors. However, both showed Braess’ paradox when
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Figure 5.7: The network in the vicinity of project 76

the whole matrices were multiplied by factors. This can be explained by the fact,

that with factors less than 1 in the select link case, traffic volumes on adjacent routes

remains high and when the select link volumes are reduced some trips from these

adjacent routes divert to the route in question. In the situation where the entire

matrix is multiplied by a factor less than 1 traffic on adjacent routes is also reduced.

• Project 70 shows the “sinusoidal-shaped” curve with the difference being zero initially,

then increasing before decreasing and then finally increasing again. It does not exhibit

Braess’ paradox however, since the differences remain positive throughout.

• Project 76 shows Braess’ paradox initially but this disappears when using a much

smaller factor than was the case in 1993 (Table 5.16). This is because between 1993

and 1999, the arterial route is widened providing additional capacity so that the delays

on it are not as large as they were previously.

The results of the analysis shown in Tables 5.12 to 5.17 make it possible to draw the

following conclusions:

• Not all new projects show Braess’ paradox, even at relatively low volumes.

• Where Braess’ paradox does occur it generally only occurs at lower volumes.

• There is evidence that the “sinusoidal-shaped” curve shown in Figure 5.4 and derived

from a simple network also occurs in real world networks.
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Table 5.17: 1999: Differences with and without projects when select link matrix using the
project is multiplied by a factor

Projects
Factor 3 8 10 18 34 70 76 102 137

0.5 3 6 15 5 1 0 -14 4 0

0.6 9 14 17 6 1 3 -6 4 1

0.7 13 14 18 5 0 2 3 7 2

0.8 16 14 21 6 -1 1 12 8 3

0.9 18 19 21 7 2 4 19 9 5

1.0 21 31 24 10 2 7 21 8 10

1.1 25 41 27 9 2 9 31 7 14

1.2 26 47 28 9 3 10 43 8 19

1.3 27 55 29 12 5 8 51 8 26

1.4 28 56 28 12 6 13 60 9 32

1.5 34 58 31 14 7 15 65 13 39

1.6 42 66 35 13 8 16 72 15 43

1.7 47 72 36 15 7 17 82 18 50

1.8 52 77 39 17 9 19 88 20 59

1.9 57 84 41 18 9 19 95 20 66

2.0 58 92 42 20 12 23 98 19 75

2.1 60 99 45 22 13 27 102 21 85

2.2 63 105 44 24 16 29 106 21 94

2.3 69 111 46 26 17 29 109 22 104

2.4 76 126 47 28 18 32 113 22 114

2.5 81 131 50 28 21 31 113 22 127

5.3 Eliminating Braess’ Paradox

In Section 5.2.1 it was shown that Braess’ paradox could be eliminated from a small network

by increasing the capacity on links upstream and downstream of the new link.

If it is possible to eliminate Braess’ paradox from the small BPR network in the manner

described in Section 5.2.1, it may well be possible to do so in a real-world situation as well.

This possibility was tested using three examples where Braess’ paradox was shown to occur.

The examples chosen were from the 1989, 1993 and 1999 networks.

Figure 5.8 shows a portion of the PWV Update network in the 1989 network. In this

case the road shown in blue was a two-lane, two-way road which was replaced by a four-

lane divided road on a different alignment (shown in red). Braess’ paradox occurred and

including the new road resulted in an increase in the total travel time of 6 vehicle-hours.

The volume-capacity ratios of the two networks were compared and the results are shown

in Figure 5.9 where red indicates an increase in V/C and green shows a decrease. Increasing

the capacity by adding an extra lane on the short section of road to the left of the new road
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Figure 5.8: Changes in Network for Project 18 (1989)

where the V/C ratio increased by 0.65 results in the elimination of Braess’ paradox. The

total travel time is now reduced by 3 vehicle-hours. Adding a lane to the section of road to

the right of the new road reduces the travel time by a further 4 vehicle-hours. The sections

where the lanes were added in the model were on the schedule to be widened a couple of

years later so Braess’ paradox could be eliminated by including them in the network at an

earlier date.

The project that was selected in the 1993 network was project number 76. This is shown

in Figure 5.10.

This project was described in some detail in the previous section. A new section of freeway

(shown in red) is included between two existing freeways and because of spacing restrictions

an existing interchange is closed with a new interchange providing access to the new section

of freeway.

In this case the magnitude of the Braess’ paradox is 40 vehicle-hours. In other words, the

inclusion of project 76 in the network causes the total travel time on the network to increase

by 40 vehicle-hours. Once again the volume/capacity ratios on the links were compared
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Figure 5.9: Changes in V/C Ratios with Project 18 Included in the 1989 Network

with and without project 76 in the network. The differences in the V/C ratios on the links

in the network are shown in Figure 5.11.

If one adds an extra lane for 6.3 kilometres in each direction to the section of road to

the south of the new interchange where the the new freeway joins the existing one, then

the Braess’ paradox is eliminated. Including project 76 in the network now results in a

reduction of 8 vehicle-hours in the total travel time. Adding an extra lane in each direction

for a further 4.8 kilometres improves the situation even more. The inclusion of the new

road (project 76) would then result in a decrease of the total travel time of 19 vehicle-hours.

This widening of the road was actually scheduled for 1995 which explains why Table 5.8

shows that Braess’ paradox for this project no longer occurs from 1995 onwards.
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Figure 5.10: Changes in Network for Project 76 (1993)
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Figure 5.11: Changes in V/C Ratios with Project 76 Included in the 1993 Network

Figure 5.12 shows project 58 in the 1999 network. In this case the improvement to the

network consisted of an additional lane in each direction of an existing road and was to be

constructed in 1992 between the points A and B.

It is interesting to note that although project 58 was to be constructed in 1992, according

to Table 5.8, Braess’ paradox would only occur for this project in 1998 and 1999. This

shows that whether Braess’ paradox occurs or not is dependent on the entire network and

the addition of further roads in the future may cause the paradox to occur when there was

none initially.

The V/C ratios were again compared and the differences between the two sets of values,

with and without the project, are shown in Figure 5.13. When the project is included in

the analysis for 1999 it results in an increase in the total travel time of 2 vehicle-hours.

In this case the differences in V/C ratios shown in Figure 5.13 do not indicate where the

problem lies as obviously as in the previous two examples. The size of the differences are

smaller. However, if the two links immediately adjacent to the road in question at point A
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Figure 5.12: Changes in Network for Project 58 (1999)

have an additional lane added in each direction, then the total travel time will decrease by

4 vehicle-hours if project 58 is included.

However, additional lanes are not really needed on this section of road since it had also been

widened in 1992. The increases in travel time caused by having the project included in the

network are small, 1 vehicle-hour in 1998 and 2 vehicle-hours in 1999. These are more than

offset by the reduction in the total travel times for the other years, 6 vehicle-hours in 1996,

5 vehicle-hours in 1997 and 12 vehicle-hours in 2000. Therefore it would probably be best

to accept the slight increases in travel times in only two of the years.

This shows that in a changing network, improvements should not only be analysed for

Braess’ paradox in the year of construction but also in future years.

The examples presented show that in a number of cases it should be possible to eliminate

Braess’ paradox by adding a short section of the future network.

92



Figure 5.13: Changes in V/C Ratios with Project 58 Included in the 1999 Network

5.4 Removing Projects With Braess’ Paradox

The previous section showed how it is often possible to eliminate Braess’ paradox by adding

capacity upstream or downstream of a project that causes the paradox to occur. This section

develops a methodology to remove projects that result in Braess’ paradox so as to minimize

the total travel time on the network.

When removing projects that cause Braess’ paradox from a network one is faced with the

following problems:

• Removing one project causing Braess’ paradox may result in other projects that sho-

wed Braess’ paradox initially to no longer show the paradox. Therefore one should

not remove all the projects showing Braess’ paradox in a single step as this could be

counter-productive.
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• The removal of a project that results in Braess’ paradox may result in other projects,

that did not show the paradox initially, showing the paradox. Therefore one should

not limit the testing of projects to only those that showed the paradox initially.

Therefore one should test each project that shows Braess’ paradox individually and the

“sub-network” that is created when removing Braess’ paradox projects should also be tested.

In this testing, the projects being tested should not be restricted to only those projects that

showed the paradox initially.

The procedure for selecting the projets to be removed from the network is shown sche-

matically in Figure 5.14. In this procedure, projects that cause Braess’ paradox to occur

are removed to form sub-networks which are are also tested and projects showing Braess’

paradox are removed creating sub-sub-networks. The process is repeated until there are no

further Braess’ projects to be removed. The network that results in the minimum travel

time is then the optimal network.

The structure of the problem shown in Figure 5.14 suggests that the “branch and bound”

method of obtaining an optimal solution may be suitable for finding the optimal set of

projects to remove from the network (or the optimal network) in order to minimize the

total travel time on the network.

In the branch and bound method for a minimization problem such as we have here, an

upper bound for the solution is established. The various branches are then followed and:

• If it can be established that following the branch will result in a solution greater than

the existing upper bound the search down the particular branch is discontinued.

• If it appears that a solution less than the existing upper bound can be obtained the

search is continued until either a new upper bound is found that is smaller than the

existing one or the search is stopped when it is apparent that no such upper bound

can be found.

The proposed methodology was developed using the results obtained from the 1985 PWV

Update Study [47] which was described previously in this dissertation. In particular, the

results obtained with a relative gap of 0.01 and shown in Table 5.8 are used. These results

are repeated here as Table 5.18. Since Table 5.18 shows that no projects causing Braess’

paradox were found in the 1995 and 1997 networks, these networks will not be considered

here.

In order to try and understand how the networks reacted to projects being removed and

to establish what the minimum travel times were, exhaustive searches were carried out for

the remaining eleven networks. In this process all the projects were tested at each step.

In addition, the projects that were included during previous years were also tested in any

given year, e.g. in 1991 the projects for 1988, 1989, 1990 and 1990 were tested.
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N = Braess’ paradox does not exist

Figure 5.14: Removing Projects with Braess’ Paradox to Obtain Minimum Travel Time

In the exhaustive search that was undertaken, all projects that showed Braess’ paradox

were removed one at a time and the remaining projects were then tested to see if any of

them showed Braess’ paradox. If any of the projects did show Braess’ paradox, the process

was repeated by removing the projects one at a time and repeating the process by testing all

the remaining projects. This was repeated until no more projects showed Braess’ paradox.

The results of the exhaustive search are shown in Table 5.19. Table 5.19 shows the projects

that need to be removed in order to minimize the travel time, the amount by which the

travel time is reduced and the number of assignments that have to carried out in order to

ensure that a minimum travel time has been found.

The last column of Table 5.14 shows that in some cases a large number of assignments have

to performed, e.g. for the 1993 network 1066 assignments were done. It would therefore be

desirable to find ways to limit the number of assignments that are required.

The results of the exhaustive search were examined and the following observations were

made:

• In some cases, projects that do not show Braess’ paradox initially, do so after other

projects have been removed from the network. An example of this is project 153 in

2000 which reduces the total travel time by one hour when it is in the network initially.
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Table 5.18: Braess’ Paradox in 1985 Update Study with Relative Gap = 0.01

Year No. of Projects No. of Braess’ Largest Braess’ Braess’ Projects

Projects Paradox (size of paradox)

1988 23 1 2 18(2)

1989 31 2 6 18(6); 20(1)

1990 44 4 1 20(1); 29(1); 34(1); 38(1)

1991 48 5 2 20(2); 28(1); 29(2); 34(1); 38(1)

1992 64 2 1 20(1); 29(1)

1993 77 5 40 27(2); 38(1); 52(1); 69(1); 76(40)

1994 91 2 35 20(1); 76(35)

1995 107 0 -

1996 123 1 1 73(1)

1997 148 0 -

1998 158 1 1 58(1)

1999 165 1 2 58(2)

2000 186 3 1 27(1); 36(1); 128(1)

However, after project 36 has been removed from the network because including it

results in Braess’ paradox, project 153 now also shows Braess’ paradox and removing

it will reduce the travel time by a further one hour.

• Therefore, based on the above point one cannot limit the search for potential projects

to remove from the network to only those that showed Braess’ paradox initially.

• Some projects show Braess’ paradox initially, but after other projects have been re-

moved from the network no longer do so. Examples of this can be found in the 1991

network where projects 29 and 34 were removed from the network so as to eliminate

all projects showing Braess’ paradox. Initially removing project 28 from the network

would reduce the travel time by one hour. However, after projects 29 and 34 have

been removed, removing project 28 would increase the travel time by four hours.

• It would therefore be incorrect to remove all the projects that showed Braess’ paradox

initially since this could have the effect of increasing the travel time on the network.

• The inclusion of some projects in the networks resulted in relatively large reductions

in travel times. Although the size of these reductions might decrease when projects

with Braess’ paradox were removed from the network the reductions were nowhere

near large enough to result in these projects showing Braess’ paradox.

Based on the results described above it was obvious that while it would be necessary to

test all projects for Braess’ paradox initially, it would be possible to eliminate a number of

them from further consideration. An inspection of the results obtained revealed that the

total reduction in travel times that was obtained by removing certain projects from the

network was never larger than:
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Table 5.19: Obtaining the Optimal Network Through Exhaustive Search

Year No. of Braess’ Projects Projects Reduction in No. of

Projects (size of paradox) Removed Travel Time Assignments

1988 23 18(2) 18, 20 3 69

1989 31 18(6); 20(1) 18, 20 7 124

1990 44 20(1); 29(1); 34(1); 38(1) 20, 38 2 264

1991 48 20(2); 28(1); 29(2); 34(1); 38(1) 29, 34 3 383

1992 64 20(1); 29(1) 20 or 29 1 193

1993 77 27(2); 38(1); 52(1); 69(1); 76(40) 20, 27, 76 41 1066

1994 91 20(1); 76(35) 76 35 428

1996 123 73(1) 73 1 247

1998 158 58(1) 58 1 317

1999 165 58(2) 58 2 341

2000 186 27(1); 36(1); 128(1) 20, 36 or 36, 89 or 2 1697

36, 104 or 36, 153

or 36, 175

∑

B + 2

Where B are the amounts by which the travel times decrease when a project showing

Braess’ paradox is removed from the network (the “size” of the paradox).

Projects which when tested initially reduced the travel time by more than this amount

never showed Braess’ paradox when other projects were removed from the network and

could therefor be excluded from consideration once the initial tests had been completed.

That is all projects where:

Reduction in travel time >
∑

B + 2

are not considered after the initial analysis.

The results that were obtained for the exhaustive searches were then re-analysed and all

projects where the reductions in travel times was greater than
∑

B +2 were excluded from

further analysis. This resulted in a reduced number of assignment being required although

the same projects were removed from the networks and the same reductions in travel times

were obtained. The results of this analysis are shown in Table 5.20.

Table 5.20 shows that using the reduced search technique results in substantially less assi-

gnments being required, of the order of 50 per cent.

One other approach to removing projects showing Braess’ paradox was tested in order to

see what the effect on the final result and the number of assignments was. This was to

remove the project with the largest paradox at each step and to ignore all other Braess’

paradox projects at that level. If two or more projects had paradoxes that were equally

large, all were tested. The results of this analysis are shown in Table 5.21.

The results shown in Table 5.21 show that following this “largest” strategy can result in a
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further reduction in the number of assignments required. In only one case was the reduction

in the travel time less than what was obtained previously and then only by one hour. It

appears that this “largest” strategy could result in a reduction in the number of assignments

required with only a chance that the result may be only a local minimum but close to the

absolute minimum. However, it should be remembered that this test was carried out on a

limited number of networks and further testing with other networks should be carried out.
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Table 5.20: Obtaining the Optimal Network Through Reduced Search

Year Projects Reduction in No. of Assignments No. of Assignments

Removed Travel Time Exhaustive Search Reduced Search

1988 18, 20 3 69 33

1989 18, 20 7 124 66

1990 20, 38 2 264 116

1991 29, 34 3 383 162

1992 20 or 29 1 193 87

1993 20, 27, 76 41 1066 610

1994 76 35 428 294

1996 73 1 247 142

1998 58 1 317 181

1999 58 2 341 188

2000 20, 36 or 36, 89 or 2 1697 400

36, 104 or 36, 153

or 36, 175

Table 5.21: Obtaining the Optimal Network By Eliminating Largest Paradox at Each Step

Year Projects Reduction in No. of Assignments No. of Assignments

Removed Travel Time Exhaustive Search Removing Largest

1988 18, 20 3 69 33*

1989 18, 20 7 124 53

1990 20, 38 2 264 71

1991 29, 34 3 383 96

1992 20 or 29 1 193 87*

1993 76 40+ 1066 134

1994 76 35 428 171

1996 73 1 247 142*

1998 58 1 317 181*

1999 58 2 341 188*

2000 20, 36 or 36, 89 or 2 1697 400*

36, 104 or 36, 153

or 36, 175

* - the same result that was obtained using the reduced search

+ - the reduction in the travel time is one less than before
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Chapter 6

CONCLUSIONS

The work described in this dissertation makes it possible to draw a number of interesting

conclusions which are listed below.

• The construction of a network that used the BPR function to describe the delay

functions on the links of the network enabled one to examine the level of congestion at

which Braess’ paradox occurs. It was shown that the paradox occurred over a range

of volumes for the demand. It was shown that the paradox occurred at relatively

low levels of congestion, approximately level of service C which designates a very

acceptable operating condition. The BPR function is the most commonly function

used to define the delay occurring on the links of a real-world network.

• It is important to use a stringent stopping criterion when attempting to determine

whether Braess’ paradox occurs or not. it is recommended that a stopping criterion

that will result in an assignment as close as possible to the true equilibrium assign-

ment. It is recommended that a relative gap of 0.01 be used as the stopping criterion.

The stopping criterion used should be an objective measurement of the the degree of

convergence to the true equilibrium condition and not the number of iterations of the

assignment algorithm carried out.

If less stringent stopping criteria are used it will appear that Braess’ paradox is more

prevalent than it actually is.

• When it occurs in real-world networks, Braess’ paradox also tends to occur over a

range of volumes at lower volumes. It is less likely to occur at higher volumes and

levels of congestion.

• In real-world networks, whether Braess’ paradox occurs or not is dependent on what

other links may be added to the network. It is possible that a link may be added in one

year and not show the paradox. However, after other links are added in succeeding

years Braess’ paradox may occur on the link which did not show it previously. The
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paradox for this link may then disappear in later years when further links are added

to the network.

• It was shown that using the Braess’ network that had BPR functions for the delay on

the links that Braess’ paradox could be eliminated by increasing the capacity on the

upstream and/or downstream links from the added link. It was also shown how this

methodology could be extended to real-world networks where Braess’ paradox occurs.

This can be done by comparing the volume/capacity (V/C) ratios of the “before”

and “after” networks and then increasing the capacity on links in the “after” network

where there is an increase in the V/C ratio.

• Where it may not be possible to increase the capacity of adjacent links a methodology

was presented to remove links that show Braess’ paradox using a limited number of

assignments. It was found that in the majority of cases removing the links with

the highest value of Braess’ paradox in a step-wise manner resulted in the same links

being removed as was the case where the search for the links was done in an exhaustive

fashion. In those cases where removing the links with the highest values for Braess’

paradox did not produce the same results as the exhaustive search, the reduction in

the travel time was very close to that obtained with the exhaustive search.

It should be remembered that the conclusions above from real-world networks were based

on a limited number of networks that were related to one another. Further tests should be

carried out using different networks with different delay functions.
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Table 1: Difference in travel times without specific projects for 1989 with multiples of the
trip matrix

Factors

Projects 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

1 1 3 4 3 8 8 12 15 22 25 35 48 63

2 17 22 27 30 36 34 40 41 41 44 60 78 94

3 0 3 2 2 7 7 13 17 16 11 21 31 34

4 -1 0 2 1 2 4 6 6 6 6 11 16 17

5 0 2 3 7 12 15 20 27 35 40 45 62 73

6 18 28 37 40 48 65 74 86 101 127 173 230 284

7 10 19 27 34 47 57 71 90 97 111 150 172 236

8 0 3 5 1 2 7 8 16 29 37 56 81 100

9 14 25 28 35 49 61 80 103 137 177 204 237 318

10 0 3 1 0 2 9 14 19 30 43 66 82 110

11 2 4 5 4 6 8 10 12 19 30 49 55 93

12 9 13 14 17 22 26 31 38 44 49 61 73 82

13 0 1 4 6 11 15 25 33 42 54 77 95 109

14 14 23 29 33 44 48 58 79 84 96 119 136 162

15 5 12 21 30 48 60 74 92 110 151 194 224 274

16 0 0 0 0 1 3 5 6 9 11 13 14 17

17 15 26 42 70 115 188 291 443 653 936 1328 1809 2440

18 -1 0 -3 -4 -3 -6 -6 -7 -9 -8 -13 -15 -12

19 4 6 7 6 10 12 16 22 26 37 46 45 56

20 -1 0 0 0 0 -1 0 -1 0 -1 0 0 -2

21 0 3 5 9 16 25 37 44 55 71 92 118 163

22 4 4 6 12 19 24 38 45 55 66 82 100 121

23 0 0 -1 0 0 2 3 5 8 11 16 23 29

24 19 26 45 71 103 146 194 238 328 423 539 715 923

25 11 12 22 22 21 12 9 37 46 34 35 47 27

26 4 4 8 9 11 19 29 37 46 61 68 112 132

27 0 0 0 0 0 0 1 -1 1 0 0 0 0

28 0 -1 0 1 0 1 0 1 1 2 1 4 2

29 1 0 2 2 1 3 2 1 1 -2 1 2 5

30 17 25 40 61 76 100 119 168 234 353 506 723 953

31 10 15 18 25 30 40 52 64 80 110 141 202 248
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Table 2: Difference in travel times without specific projects for 1989 with multiples of the
trip matrix - continued

Factors

Projects 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

1 72 71 108 139 172 183 237 300 349 451 543 644 740

2 119 151 221 270 301 397 504 584 677 760 885 1070 1218

3 47 47 89 110 138 175 214 258 304 369 433 532 591

4 22 41 72 74 85 116 143 161 211 244 297 349 403

5 102 123 145 182 221 264 322 390 439 511 625 780 907

6 288 332 411 474 547 681 786 910 1112 1251 1414 1668 1920

7 257 283 346 400 457 557 657 750 904 1022 1189 1429 1680

8 111 164 202 238 282 393 466 548 656 686 804 1020 1229

9 429 495 619 708 823 1019 1206 1469 1663 1903 2319 2736 3135

10 153 168 203 240 295 389 450 527 598 693 866 986 1120

11 127 156 219 263 329 444 558 640 774 896 1054 1275 1504

12 80 87 101 106 131 161 187 237 284 330 389 489 536

13 143 185 218 271 333 425 512 621 699 787 948 1152 1316

14 173 203 233 259 307 353 438 520 594 650 745 811 962

15 355 395 494 563 622 744 935 1068 1175 1414 1711 2092 2431

16 27 29 45 52 64 74 71 106 113 136 166 193 225

17 3236 4253 5454 6979 8781 10977 13560 16621 20218 24381 29215 34851 41246

18 -32 -36 -12 -21 -23 -29 -57 -75 -78 -110 -156 -140 -192

19 66 86 119 139 173 219 259 334 395 453 494 624 698

20 -1 -2 0 0 -4 -3 -2 -1 -6 -4 -2 -13 -4

21 202 223 280 324 366 471 602 658 775 897 1077 1270 1531

22 134 130 159 218 254 311 386 471 585 689 786 963 1097

23 38 53 77 100 110 167 235 285 335 427 532 632 718

24 1156 1435 1753 2135 2635 3211 3923 4694 5659 6804 8158 9662 11365

25 52 77 87 89 131 159 193 209 270 320 366 511 565

26 204 209 246 310 346 388 444 520 585 687 783 930 1113

27 1 -1 0 1 1 0 1 1 2 4 5 9 7

28 9 11 16 25 25 32 54 76 92 91 107 120 143

29 8 7 11 11 18 12 16 27 27 47 65 61 79

30 1300 1731 2242 2929 3727 4722 5896 7251 8863 10755 13095 15702 18644

31 312 400 501 606 773 987 1184 1383 1650 1960 2341 2734 3239
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Table 3: Difference in travel times without specific projects for 1993 with multiples of the
trip matrix

Factors

Projects 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

1 3 6 10 11 18 24 29 32 48 58 84 109 141

2 23 30 43 50 58 57 58 65 69 87 110 142 194

3 0 1 4 6 8 14 25 23 22 25 39 63 87

4 1 -1 3 4 4 9 14 19 23 28 34 35 29

5 3 5 12 17 23 35 47 67 92 121 151 203 260

6 16 23 30 38 42 48 66 87 112 108 135 208 235

7 12 18 30 41 50 69 98 113 118 148 170 224 270

8 0 4 5 3 3 7 15 28 43 60 78 106 142

9 18 25 33 40 54 74 93 125 180 220 265 349 400

10 -1 2 1 2 6 15 21 33 53 90 120 162 163

11 0 3 6 5 6 8 7 11 16 21 33 53 64

12 7 10 17 17 23 29 34 39 47 56 59 67 83

13 -1 1 6 7 12 21 29 38 54 79 87 112 157

14 16 22 33 41 51 69 82 94 112 136 157 187 207

15 9 21 35 50 69 94 120 147 189 245 271 368 424

16 2 2 6 9 15 24 32 42 49 67 87 108 153

17 20 39 69 122 209 344 544 833 1238 1784 2513 3449 4654

18 -2 -1 2 4 4 10 11 11 22 21 20 28 29

19 6 9 11 14 20 25 30 43 63 77 84 110 137

20 0 -1 3 -2 -1 0 -2 0 0 -1 0 0 1

21 -1 4 8 12 22 35 45 56 72 101 137 188 227

22 2 4 13 17 30 44 54 67 93 109 125 163 196

23 1 1 2 2 2 4 8 14 22 29 44 65 96

24 27 53 88 133 194 258 365 495 663 874 1149 1510 1900

25 10 24 24 16 14 16 18 28 45 33 26 42 39

26 4 12 18 24 34 40 52 71 90 119 152 178 197

27 0 0 1 0 0 -2 0 0 0 0 -1 0 0

28 9 14 18 20 21 26 28 34 39 49 53 71 93

29 0 1 3 3 3 4 4 16 15 9 8 7 5

30 20 34 56 77 90 119 178 289 454 666 929 1320 1802

31 16 20 26 36 48 69 91 134 179 232 308 392 497

33 1 6 6 13 16 14 17 28 43 51 70 97 137

34 0 0 1 0 0 0 1 2 5 9 11 16 17

35 3 8 9 15 21 42 59 82 121 157 207 250 302

36 0 0 0 0 0 0 -1 0 1 -1 -1 0 0

37 3 11 16 13 14 20 26 38 35 42 57 64 81

38 0 -2 -1 -1 -1 -1 -1 0 1 1 1 2 5

39 26 34 40 44 52 64 75 96 105 130 170 192 249
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Table 4: Difference in travel times without specific projects for 1993 with multiples of the
trip matrix - continued

Factors

Projects 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

40 2 12 23 26 40 54 76 108 132 152 180 228 262

41 9 14 21 24 33 47 63 80 120 174 230 333 448

42 10 14 20 29 36 45 60 73 101 102 122 168 221

43 -1 2 6 8 15 20 24 37 61 72 96 134 182

44 13 19 27 42 51 71 81 104 125 125 151 210 226

45 -1 2 9 5 9 20 29 51 85 114 168 241 290

46 -1 2 4 7 10 15 17 28 38 49 64 76 88

47 3 9 19 23 40 63 94 134 164 189 212 256 276

48 7 12 15 15 18 24 32 39 50 59 73 99 108

49 1 1 1 2 2 3 4 10 7 12 23 32 41

50 0 8 12 14 25 32 34 47 65 80 115 161 196

51 1 4 4 4 5 11 14 19 30 32 36 43 60

52 0 0 0 0 -1 -1 0 -1 0 -1 -1 1 -1

53 1 1 2 2 5 8 10 20 31 39 55 74 109

54 4 9 9 13 16 23 22 24 32 36 53 79 101

55 3 1 5 1 3 3 6 14 13 18 24 41 47

56 9 13 17 18 23 27 29 32 38 48 50 65 87

57 3 8 9 6 4 11 11 12 14 19 26 33 37

58 -3 2 0 0 -1 0 0 -1 3 2 -2 1 1

59 2 5 8 10 16 27 31 40 58 77 93 120 136

60 3 6 9 11 15 21 29 52 77 78 97 124 129

61 0 7 14 19 21 31 43 53 65 87 104 122 152

62 9 17 270 36 40 46 56 64 83 114 160 208 247

63 18 31 42 44 65 120 156 208 287 336 448 565 674

64 1 3 4 7 12 19 27 33 50 62 82 92 127

65 58 74 105 114 145 185 240 284 361 451 572 715 893

66 9 13 17 21 23 26 33 38 49 60 64 75 93

67 -2 2 4 6 5 11 15 19 24 30 37 47 59

68 2 2 3 2 1 2 1 2 3 3 3 5 4

69 0 0 -1 0 0 -1 0 0 2 1 5 5 11

70 1 -1 3 0 1 4 6 8 11 19 21 30 37

71 1 -1 1 -1 1 3 4 6 11 12 20 29 43

72 8 13 21 23 33 46 65 65 89 115 148 159 223

73 -2 -1 0 -2 -1 2 7 17 20 35 50 102 126

74 0 0 0 1 0 1 8 16 26 42 53 68 91

75 -1 2 4 8 12 12 18 25 30 39 58 71 86

76 -9 -12 -16 -21 -28 -40 -41 -54 -57 -80 -93 -87 -91

77 4 9 19 29 29 50 83 112 147 195 273 311 392

78 17 28 38 59 83 122 157 202 246 288 328 406 452
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Table 5: Difference in travel times without specific projects for 1993 with multiples of the
trip matrix - continued

Factors

Projects 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

1 171 225 256 266 377 412 513 589 699 879 1020 1150 1298

2 265 283 366 441 526 605 771 968 1167 1466 1756 2077 2479

3 111 120 156 208 250 302 404 481 591 747 903 1078 1315

4 73 75 96 111 121 114 146 176 198 273 307 340 440

5 333 409 542 639 775 946 1134 1322 1602 1920 2274 2681 3140

6 266 280 336 392 445 491 591 734 883 1070 1289 1551 1877

7 337 428 523 588 689 800 978 1215 1453 1660 2011 2341 2866

8 177 227 293 365 459 566 658 816 1025 1185 1412 1612 1921

9 509 669 840 929 1161 1383 1710 2118 2513 2980 3583 4206 4883

10 207 294 350 404 568 619 809 961 1165 1364 1722 2025 2377

11 85 105 120 155 217 258 352 418 536 600 656 790 940

12 97 106 128 156 177 190 225 282 340 383 469 526 635

13 197 242 305 370 456 514 599 772 870 1093 1272 1476 1674

14 261 292 362 409 491 517 591 711 824 935 1116 1291 1513

15 514 618 759 875 1090 1279 1544 1893 2273 2725 3170 3768 4388

16 185 263 352 429 548 672 809 997 1212 1461 1769 2099 2500

17 6175 8097 10473 13341 16821 20984 25953 31858 38811 46806 56094 66807 79167

18 44 47 81 72 88 77 149 176 209 256 309 346 433

19 180 197 239 313 394 436 536 688 868 1030 1227 1409 1741

20 2 -1 1 0 2 1 4 2 9 7 9 12 13

21 299 360 484 569 690 822 1017 1230 1409 1672 2038 2514 2951

22 251 287 367 465 560 619 776 962 1074 1324 1553 1808 2158

23 130 169 251 302 420 495 644 811 969 1196 1438 1719 2002

24 2400 3074 3920 4856 6081 7444 9178 11228 13614 16386 19609 23302 27538

25 83 103 118 176 171 138 229 289 345 477 619 680 809

26 263 299 342 337 336 383 367 398 425 486 483 540 643

27 0 0 3 2 2 3 5 9 8 14 10 19 23

28 110 125 153 180 226 250 290 335 430 526 634 732 849

29 9 12 12 4 7 9 13 14 24 20 21 25 55

30 2455 3253 4270 5507 7027 8781 10957 13555 16522 20028 24145 28803 34226

31 651 838 1073 1345 1668 2038 2461 2935 3554 4295 5007 5860 6768

33 163 180 220 233 283 346 399 522 650 785 964 1178 1353

34 20 31 36 46 64 83 99 145 174 197 253 295 347

35 384 481 634 758 929 1104 1402 1712 2076 2471 2903 3435 4064

36 0 -1 2 4 4 4 5 12 13 19 21 18 22

37 107 126 182 243 323 365 470 582 709 823 1021 1265 1497

38 6 4 10 8 11 8 14 17 23 22 17 26 27

39 302 353 414 519 631 728 901 1074 1193 1420 1613 1926 2364
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Table 6: Difference in travel times without specific projects for 1993 with multiples of the
trip matrix - continued

Factors

Projects 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

40 313 366 452 575 716 865 1029 1256 1423 1637 1963 2295 2701

41 598 788 1041 1257 1559 1860 2237 2699 3233 3860 4553 5447 6358

42 270 342 439 524 656 796 985 1208 1422 1774 2144 2489 3015

43 197 226 260 276 346 369 466 592 643 775 958 1069 1225

44 264 281 305 379 497 415 496 537 629 686 920 1165 1431

45 383 481 597 747 935 1157 1440 1679 2058 2534 3039 3525 4106

46 119 156 194 225 243 270 315 366 436 572 694 823 1013

47 342 382 447 578 683 755 837 966 1072 1264 1572 1856 2211

48 119 142 161 182 226 287 338 381 474 560 652 766 922

49 60 85 110 122 132 186 227 263 297 353 419 477 525

50 235 319 396 415 568 660 810 1000 1216 1559 1870 2177 2523

51 77 98 126 143 193 246 322 373 499 539 626 744 891

52 0 0 1 2 2 0 -1 3 1 2 4 3 8

53 140 177 238 279 325 414 492 574 709 831 993 1160 1338

54 135 154 208 263 299 418 517 651 793 903 1031 1169 1379

55 60 66 80 106 134 184 229 315 335 430 506 577 673

56 98 110 127 140 177 194 222 247 314 378 463 535 626

57 50 62 85 77 89 86 92 93 98 128 135 153 161

58 8 7 17 26 35 36 36 64 65 100 139 145 221

59 181 193 249 317 408 492 589 754 892 1096 1335 1628 1939

60 125 172 228 274 313 340 397 455 559 631 775 883 1032

61 182 222 230 236 243 301 376 424 458 547 584 678 818

62 293 334 444 563 692 800 998 1171 1473 1770 2156 2540 3008

63 881 1102 1378 1665 2027 2365 2820 3466 4081 4832 5768 6835 8101

64 138 171 264 293 404 468 639 784 938 1107 1300 1560 1794

65 1091 1360 1670 2001 2443 2990 3561 4345 5125 6195 7396 8731 10221

66 114 142 167 210 288 375 443 534 644 752 890 1071 1291

67 86 103 124 164 195 279 313 385 454 590 751 928 1215

68 6 5 7 7 8 3 5 11 11 9 11 12 11

69 15 16 29 38 43 64 72 82 109 125 148 183 217

70 51 64 79 100 125 139 176 229 274 338 424 506 595

71 78 112 159 243 369 480 589 721 891 1041 1448 1721 2098

72 270 319 419 504 562 671 872 993 1141 1366 1576 1835 2170

73 164 206 305 361 448 576 712 904 1054 1341 1629 1916 2347

74 126 146 185 236 284 313 387 485 600 724 885 1048 1262

75 102 118 153 195 220 251 316 418 522 607 729 868 1024

76 -96 -114 -89 -86 -66 -125 -81 -107 -224 -322 -329 -357 -436

77 502 623 769 903 1092 1361 1636 1963 2333 2859 3367 3977 4727

78 548 549 598 703 893 979 1090 1043 1436 1624 2128 2552 3031
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Table 7: Difference in travel times without specific projects for 1999 with multiples of the
trip matrix

Factors

Projects 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

1 6 5 14 19 28 34 44 69 88 81 127

2 14 19 37 52 67 67 61 90 122 157 172

3 2 -3 3 9 11 21 25 26 61 77 80

4 0 -1 2 5 6 10 14 14 22 22 26

5 7 13 24 32 43 59 84 108 143 177 241

6 22 24 35 35 46 67 87 72 89 133 189

7 20 29 45 57 87 110 121 131 196 217 272

8 5 -2 6 5 17 31 45 74 93 123 171

9 20 26 40 52 70 86 123 163 214 266 351

10 0 -2 1 1 16 24 39 66 91 130 183

11 4 3 5 6 7 9 11 21 32 40 57

12 11 12 22 30 37 39 43 52 72 85 105

13 0 -1 6 11 12 18 25 37 57 64 82

14 20 27 41 56 67 78 94 100 147 154 174

15 39 61 91 125 160 207 282 375 501 636 842

16 21 36 50 73 89 105 137 164 194 261 328

17 42 84 174 325 574 958 1535 2355 3521 5072 7131

18 0 -3 3 4 6 10 15 10 10 13 8

19 10 11 18 21 27 40 46 56 91 128 185

20 -1 -4 -2 -2 -1 1 -1 1 0 0 1

21 4 2 11 16 19 26 41 63 98 150 216

22 7 8 11 23 30 42 60 84 106 128 151

23 0 -2 5 13 22 41 63 98 152 225 323

24 88 148 245 351 489 684 974 1362 1950 2670 3649

25 27 24 27 30 41 61 53 71 92 123 144

26 25 38 62 87 112 148 173 197 223 273 325

27 0 0 0 0 0 0 0 0 0 0 1

28 13 12 18 20 26 33 37 45 51 70 83

29 4 1 7 6 9 13 26 38 41 40 30

30 35 58 82 125 215 407 690 1093 1673 2470 3579

31 28 39 57 85 140 147 195 233 322 436 582

33 5 7 17 19 18 34 62 84 120 151 223

34 0 -3 -1 -1 1 2 3 5 10 13 15

35 6 3 16 31 52 80 107 128 189 239 337

36 0 0 0 -1 0 0 -1 0 0 0 0

37 13 8 16 28 33 42 56 71 85 106 138

38 0 -2 0 -1 -1 1 0 3 2 3 7

39 30 36 45 52 65 77 95 119 138 147 157

40 29 45 68 107 147 185 242 273 333 391 495

41 21 30 45 65 98 133 204 300 422 588 797

42 15 16 28 36 44 69 84 90 129 178 224

43 0 2 8 11 20 31 47 69 98 130 178
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Table 8: Difference in travel times without specific projects for 1999 with multiples of the
trip matrix - continued

Factors

Projects 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

44 28 36 55 58 72 74 72 93 101 126 139

45 11 16 31 63 116 157 231 271 395 553 766

46 7 14 25 39 60 94 131 183 247 327 414

47 18 34 66 104 130 158 200 242 259 269 343

48 9 12 15 17 28 39 47 59 73 91 115

49 1 -1 6 13 22 26 28 33 36 45 61

50 16 27 51 81 123 166 217 275 371 477 628

51 4 3 6 16 22 27 33 42 59 67 103

52 0 0 -1 -2 1 1 0 1 1 0 3

53 1 2 6 6 13 18 27 34 45 47 68

54 5 8 10 13 11 12 17 26 38 47 68

55 1 -3 2 2 7 15 8 17 27 40 58

56 13 12 18 20 25 34 37 39 48 680 79

57 10 10 17 24 37 54 74 82 97 117 136

58 -2 -3 1 5 4 -2 0 1 14 25 31

59 7 7 26 36 64 61 86 78 121 163 198

60 11 11 19 31 48 85 123 185 278 389 475

61 0 -2 2 3 12 17 25 26 27 24 35

62 30 28 44 54 75 98 140 176 216 280 381

63 44 54 83 134 178 231 308 389 505 656 827

64 2 3 12 19 27 40 42 39 45 56 86

65 95 142 207 268 335 455 631 857 1172 1638 2186

66 19 22 28 35 44 61 77 103 118 153 192

67 11 9 20 34 45 71 90 120 167 231 307

68 2 -1 2 2 3 4 4 5 6 7 8

69 0 -3 0 -1 1 1 1 1 3 2 5

70 3 -3 0 1 4 7 11 11 18 18 37

71 4 -2 -2 0 4 6 8 17 23 50 81

72 15 12 24 33 46 59 75 104 131 173 208

73 11 10 20 16 21 31 51 72 90 144 208

74 3 -1 0 10 19 27 53 73 96 124 156

75 5 3 3 5 9 13 22 32 36 39 46

76 -1 -3 8 14 22 21 47 40 77 102 152

77 4 3 16 23 37 54 80 127 161 208 253

78 38 55 82 96 124 138 143 165 194 229 260

79 1 -1 2 2 3 7 9 14 17 22 45

80 3 2 10 12 17 26 44 64 91 123 164

81 19 18 30 37 49 61 78 99 137 192 295

82 20 21 36 46 56 73 106 144 173 232 299

83 0 -3 0 0 1 1 1 2 0 1 3

84 3 -1 0 2 2 4 4 6 4 8 10
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Table 9: Difference in travel times without specific projects for 1999 with multiples of the
trip matrix - continued

Factors

Projects 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

85 15 13 25 34 47 54 77 114 121 160 168

86 6 5 10 10 13 18 21 22 30 43 74

87 35 53 82 121 164 188 243 288 354 444 579

88 1 -1 1 0 1 0 0 4 11 14 9

89 1 -4 -2 0 1 1 0 3 9 10 10

90 2 1 7 12 21 25 43 51 72 102 131

91 3 -1 4 8 18 23 39 46 57 79 108

92 22 32 42 48 55 65 76 83 103 122 141

93 0 0 0 -2 0 0 4 10 16 24 39

94 6 4 19 32 44 66 98 139 187 234 328

95 26 39 57 73 102 132 183 229 296 367 467

96 11 12 21 27 37 49 72 96 125 155 200

97 0 0 1 2 2 1 4 6 2 5 6

98 7 3 8 10 16 23 27 33 47 62 67

99 9 11 20 31 46 61 85 112 150 202 273

100 14 11 18 17 19 21 28 42 53 73 84

101 8 7 17 24 37 42 64 96 102 134 139

102 3 -1 7 9 10 8 17 21 13 15 22

103 0 0 1 0 4 6 8 12 15 24 29

104 0 0 -1 1 1 0 0 0 0 0 1

105 10 10 16 25 42 64 85 119 149 206 255

106 3 0 12 17 29 36 60 58 78 99 126

107 55 64 94 125 168 192 254 314 363 441 610

108 93 131 192 274 366 489 680 939 1266 1778 2398

109 1 -1 3 4 8 10 18 30 36 50 63

110 7 10 17 17 28 39 55 75 102 115 150

111 2 -2 3 3 5 5 4 3 5 9 9

112 16 19 27 32 42 69 78 82 129 160 227

113 0 -3 0 1 2 4 11 12 10 14 21

114 1 -3 1 3 6 9 16 21 41 48 84

115 3 6 18 37 61 101 146 225 296 388 562

116 0 -2 2 1 3 4 3 5 5 5 7

117 7 6 12 17 21 27 33 42 50 78 107

118 26 32 51 73 105 158 240 351 506 726 1003

119 3 2 2 2 15 19 36 44 54 54 70

120 9 3 8 9 16 37 55 80 125 183 272

121 2 1 8 13 15 36 49 72 111 148 186

122 2 1 6 10 17 31 42 68 105 141 224

123 0 -2 3 5 9 17 35 51 86 131 175

124 27 33 53 76 94 126 159 238 293 392 535

125 2 2 6 11 18 24 33 47 63 92 117
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Table 10: Difference in travel times without specific projects for 1999 with multiples of the
trip matrix - continued

Factors

Projects 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

126 2 3 6 10 15 27 39 59 84 118 155

127 2 -1 7 7 12 20 33 41 57 80 114

128 1 -3 2 0 2 2 1 3 5 4 2

129 -1 -2 3 0 8 12 19 21 25 31 41

130 0 0 0 -1 0 1 0 2 6 9 8

131 -1 -2 3 4 8 9 2 8 12 19 37

132 0 -3 1 2 8 9 11 4 3 5 10

133 1 -1 2 4 5 8 18 41 39 49 51

134 4 3 7 9 12 23 38 43 60 58 58

135 18 18 26 31 32 48 52 63 75 79 90

136 2 0 3 5 9 11 13 19 30 34 54

137 0 -4 1 2 5 10 16 25 41 59 92

138 2 3 8 11 17 23 32 34 37 45 43

139 0 0 -2 2 7 11 22 29 43 50 71

140 3 1 6 20 34 33 43 59 90 124 165

141 2 3 8 14 19 31 49 61 84 121 153

142 20 21 29 35 44 51 74 92 94 108 118

143 4 0 4 9 18 24 36 56 52 74 100

144 1 -3 0 0 1 3 3 6 6 8 12

145 0 -1 3 6 13 24 40 55 77 109 143

146 4 0 6 6 11 14 28 42 56 82 98

147 3 2 7 12 16 23 31 40 47 66 79

148 0 -2 1 0 0 0 0 1 1 1 2

149 4 2 8 10 11 14 13 17 21 20 31

150 0 -4 -1 -1 3 11 13 17 20 18 19

151 1 1 7 4 4 5 8 8 18 23 34

152 1 -3 4 12 21 51 82 139 210 311 421

153 0 -2 0 -1 0 1 0 0 1 1 1

154 3 0 3 6 9 9 13 11 13 23 31

155 19 19 27 32 41 49 62 76 91 104 152

156 13 18 34 38 51 61 91 126 173 216 281

157 0 0 6 10 22 31 41 59 75 87 101

158 4 11 7 10 20 24 31 44 66 86 118

159 11 13 26 34 59 86 111 152 203 262 311

160 12 15 36 50 56 78 109 149 177 200 223

161 -1 -3 2 4 6 7 10 5 1 5 22

162 0 -3 2 4 11 14 21 27 37 55 87

164 6 5 11 16 29 58 81 109 193 284 382

165 2 1 10 16 30 38 54 73 107 133 177

166 22 27 42 58 69 96 129 188 256 359 470
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Table 11: Difference in travel times without specific projects for 1999 with multiples of the
trip matrix - continued

Factors

Projects 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5

1 180 206 260 324 455 502 596 798 973 1166

2 205 248 305 384 490 566 691 855 1030 1228

3 96 129 171 235 336 420 480 617 768 900

4 45 61 70 89 107 96 136 157 209 224

5 297 406 519 651 807 944 1141 1397 1722 2063

6 221 261 324 410 508 567 655 745 897 1069

7 364 483 641 810 974 1253 1513 1846 2292 2829

8 220 268 351 498 618 770 972 1193 1449 1752

9 391 448 569 673 797 1019 1204 1527 1867 2209

10 232 298 376 487 602 806 965 1227 1553 1897

11 83 100 148 183 213 286 365 440 522 636

12 103 137 185 230 264 311 350 422 507 629

13 123 144 197 264 296 379 469 631 773 874

14 205 210 278 365 417 563 639 788 921 1048

15 1013 1245 1684 2096 2605 3302 4103 4973 6101 7502

16 428 549 650 792 1009 1230 1505 1824 2234 2744

17 9834 13323 17715 23227 29991 38261 48225 60204 74425 91223

18 5 9 18 16 12 20 50 73 69 82

19 216 276 337 451 582 727 914 1102 1313 1560

20 0 1 1 3 0 0 8 12 13 19

21 279 346 478 609 780 968 1120 1412 1730 2176

22 187 256 343 421 508 605 725 920 1143 1411

23 435 580 794 1040 1330 1727 2130 2716 3412 4183

24 4897 6611 8715 11334 14602 18597 23431 29208 36030 44076

25 195 258 323 401 520 628 719 888 1061 1291

26 377 458 502 635 737 843 1032 1097 1290 1528

27 1 1 0 1 1 4 8 10 13 12

28 89 125 182 188 246 281 384 415 521 656

29 37 10 50 69 98 124 157 189 229 311

30 4996 6826 9174 12091 15722 20090 25363 31792 39409 48379

31 757 933 1172 1414 1773 2173 2678 3307 4056 4896

33 270 289 397 526 628 804 1016 1221 1465 1923

34 33 44 69 89 111 141 167 207 265 304

35 409 516 663 842 1064 1341 1597 1984 2393 2844

36 0 0 2 4 6 14 22 25 40 44

37 199 250 299 428 526 651 819 1069 1307 1526

38 8 12 12 10 13 21 20 20 36 23

39 198 227 297 338 393 488 568 714 828 992

40 581 727 878 1095 1288 1552 1883 2304 2811 3324

41 1062 1405 1807 2302 2971 3649 4467 5542 6790 8115

42 277 357 464 580 748 948 1189 1517 1846 2196

43 255 305 383 475 624 755 901 1129 1350 1539
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Table 12: Difference in travel times without specific projects for 1999 with multiples of the
trip matrix - continued

Factors

Projects 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5

44 139 155 236 283 274 352 480 669 760 940

45 991 1246 1595 2018 2571 3217 4054 5028 6203 7598

46 476 628 746 931 1071 1306 1600 1811 2121 2537

47 406 543 615 801 917 1119 1317 1605 2011 2484

48 138 139 172 223 273 331 404 449 567 678

49 79 101 119 128 123 139 156 187 230 247

50 850 1053 1359 1618 2026 2495 3005 3727 4490 5447

51 136 165 210 264 312 390 497 633 761 916

52 4 3 1 3 6 5 10 7 7 8

53 88 140 196 264 305 372 443 543 641 800

54 82 122 144 182 232 311 379 485 591 718

55 49 69 63 69 86 108 163 202 226 278

56 83 98 136 130 170 191 255 287 347 455

57 174 196 240 278 333 393 440 534 603 644

58 44 62 114 138 189 225 292 408 492 600

59 252 287 429 524 658 836 1076 1283 1607 1951

60 556 805 1019 1204 1528 1956 2370 2893 3520 4409

61 41 37 47 54 58 46 29 55 52 63

62 492 607 856 1126 1399 1750 2188 2701 3349 4182

63 1042 1274 1569 2095 2549 3120 3805 4622 5706 7039

64 116 153 185 213 290 402 481 665 817 1018

65 2884 3702 4765 6013 7573 9412 11570 14276 17372 20915

66 249 337 433 564 709 896 1069 1313 1649 2096

67 376 492 624 781 1008 1217 1497 1796 2270 2875

68 9 11 12 11 14 15 19 26 19 15

69 12 16 17 23 40 51 72 78 90 109

70 50 72 89 118 137 190 231 285 372 424

71 147 241 374 552 724 859 1110 1488 1915 2391

72 2741 340 430 518 664 834 970 1233 1517 1823

73 267 324 491 602 755 958 1253 1591 1962 2476

74 174 227 278 362 441 529 654 758 945 1211

75 52 77 82 95 134 146 176 216 271 329

76 178 206 311 368 410 407 390 488 609 766

77 316 352 418 470 604 716 881 991 1207 1437

78 321 334 415 505 604 771 996 1276 1490 1796

79 67 99 148 190 244 346 434 599 777 913

80 202 248 296 370 436 469 511 558 665 806

81 372 468 596 720 935 1108 1352 1654 2029 2505

82 357 445 542 641 825 964 1149 1417 1720 2141

83 3 6 11 22 19 19 30 45 33 40

84 15 20 20 25 31 35 53 62 83 98

85 207 233 275 328 448 543 708 933 1170 1431
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Table 13: Difference in travel times without specific projects for 1999 with multiples of the
trip matrix - continued

Factors

Projects 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5

86 104 139 138 186 239 256 324 462 582 763

87 712 884 1113 1395 1777 2199 2739 3389 4117 4937

88 6 8 9 17 21 25 37 34 33 34

89 7 7 7 12 17 26 27 38 49 54

90 162 177 223 273 312 375 412 531 655 819

91 126 149 216 290 362 440 473 543 660 876

92 157 173 213 269 302 344 424 539 639 739

93 44 65 103 158 241 309 401 485 626 830

94 404 578 691 892 1087 1337 1735 2137 2589 3141

95 601 755 990 1188 1535 1848 2273 2843 3465 4262

96 276 357 451 530 674 799 928 1129 1375 1600

97 4 8 14 5 11 10 15 10 15 8

98 97 156 188 234 295 354 472 618 725 890

99 334 470 609 782 996 1165 1495 1868 2308 2808

100 88 101 142 228 292 362 491 666 792 973

101 160 189 223 271 363 451 570 747 988 1226

102 28 34 90 109 144 152 192 260 304 378

103 33 41 60 62 90 106 113 148 190 214

104 -1 1 -1 0 6 17 8 22 34 39

105 344 468 581 721 975 1158 1447 1862 2230 2692

106 181 212 324 361 471 531 706 896 1077 1294

107 800 970 1263 1638 2023 2532 3112 3845 4642 5639

108 3156 4037 5114 6336 7973 9846 12078 14664 17770 21283

109 90 111 170 215 279 345 360 466 600 777

110 172 234 304 375 464 551 699 829 1072 1318

111 13 20 21 20 29 48 44 58 75 71

112 305 419 586 727 951 1133 1330 1753 2091 2517

113 33 35 54 73 88 117 156 200 239 252

114 111 117 180 249 278 347 432 562 701 842

115 729 936 1234 1580 2014 2409 2985 3703 4634 5727

116 5 8 7 4 4 16 21 35 53 62

117 128 134 161 182 233 283 380 473 605 754

118 1345 1810 2363 3104 3970 5074 6414 7944 9833 12074

119 67 47 87 109 126 154 207 255 288 357

120 300 412 531 749 1045 1359 1866 2377 2925 3616

121 206 328 430 539 683 814 1068 1289 1676 2097

122 344 463 615 824 1080 1373 1677 2141 2618 3148

123 228 336 507 646 800 1023 1309 1656 2075 2596

124 721 937 1260 1686 2064 2593 3117 3862 4734 6761

125 160 197 249 344 419 538 633 804 964 1204

126 195 249 350 470 596 740 864 1087 1358 1616
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Table 14: Difference in travel times without specific projects for 1999 with multiples of the
trip matrix - continued

Factors

Projects 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5

127 123 176 258 305 358 492 602 797 1023 1236

128 0 -9 -12 -4 2 11 20 30 44 83

129 51 70 81 113 151 169 226 248 298 380

130 16 18 19 24 24 43 47 61 48 67

131 48 47 62 81 103 132 185 208 262 315

132 12 7 8 11 12 16 23 28 36 42

133 73 111 119 186 244 284 381 451 563 613

134 101 124 192 216 251 345 470 613 757 982

135 83 120 153 150 185 234 470 298 414 505

136 69 64 98 121 158 199 275 273 317 400

137 131 142 177 220 331 390 223 570 700 835

138 49 74 79 86 90 114 450 208 240 296

139 80 104 119 155 195 222 141 310 390 518

140 202 275 314 422 527 616 273 944 1196 1411

141 174 220 241 327 380 447 794 664 815 1015

142 132 159 205 306 384 474 582 751 909 1200

143 125 166 221 281 356 432 547 646 768 922

144 17 15 22 28 46 56 62 69 87 92

145 169 225 339 458 568 727 869 1133 1412 1735

146 141 176 201 284 342 438 521 653 758 976

147 103 128 176 233 345 413 503 604 724 843

148 2 5 7 10 24 34 46 54 78 113

149 15 37 47 55 100 111 135 134 183 222

150 26 56 83 100 123 148 200 236 296 398

151 51 76 110 137 186 252 328 399 545 653

152 537 691 919 1142 1429 1730 2103 2584 3167 3943

153 -1 4 6 14 8 19 27 24 33 35

154 29 30 31 23 30 34 39 62 59 78

155 185 223 267 334 436 521 655 892 1136 1292

156 335 405 532 608 705 857 1007 1277 1563 1921

157 133 156 187 201 283 330 435 541 670 767

158 140 188 245 330 440 542 660 832 1004 1136

159 401 513 668 792 1052 1294 1590 1927 2346 2813

160 238 324 384 432 492 592 685 785 936 1147

161 25 26 41 67 86 101 111 149 184 216

162 105 100 127 156 238 287 336 416 512 627

163 100 134 252 306 409 462 525 656 798 924

164 494 733 941 1210 1526 1972 2400 2918 3623 4499

165 220 282 374 497 609 700 876 1122 1388 1651

166 578 770 1017 1336 1656 2008 2437 3048 3750 4501
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