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Abstract

One of the most noticeable stylized facts in finance is that stock index returns are neg-
atively correlated with changes in volatility. The economic rationale for the effect is still
controversial. The competing explanations have different implications for the origin of the
relationship: Are volatility changes induced by index movements, or inversely, does volatil-
ity drive index returns? To differentiate between the alternative hypotheses, we analyze
the lead-lag relationship of option implied volatility and index return in Germany based on
Granger causality tests and impulse-response functions. Our dataset consists of all transac-
tions in DAX options and futures over the time period from 1995 to 2005. Analyzing returns
over 5-minute intervals, we find that the relationship is return-driven in the sense that in-
dex returns Granger cause volatility changes. This causal relationship is statistically and
economically significant and can be clearly separated from the contemporaneous correlation.
The largest part of the implied volatility response occurs immediately, but we also observe a
smaller retarded reaction for up to one hour. A volatility feedback effect is not discernible.
If it exists, the stock market appears to correctly anticipate its importance for index returns.
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1 Introduction

A well known stylized fact in finance is that stock index returns are negatively correlated with
changes in volatility (Black (1976)). The negative relationship is typically more pronounced
in falling than in rising markets (Figlewski/Wang (2000)) and is stronger for indices than for
individual stocks. The distinctive cross dependence pattern between return and volatility plays
an essential role in the development of volatility as an asset class, in volatility modelling and in
option pricing. Nevertheless, a fully consistent economic explanation for the effect has not yet
been offered (see Bouchaud et al. (2001), Bollerslev/Zhou (2006)).

The first attempt to find an economic rationale for the negative return correlation relies on
a corporate finance argument. Black (1976) and Christie (1982), among others, argue that a
positive stock return increases the market value of the firm’s equity, thereby diminishing its
financial leverage ratio. The reduced leverage gear will result in a lower volatility of stock
returns. The empirical observations, however, do not support this leverage hypothesis. Firstly,
it is not compatible with the observed asymmetry of the effect in falling and rising markets.
Secondly, the leverage hypothesis predicts to find a stronger relationship on the individual firm
level than the index level. This prediction is contrary to what is empirically observed (Bouchaud
et al. (2001)).! In a US study, Figlewski/Wang (2000) conclude that the negative correlation
on the index level is far too strong to be explained by the leverage hypothesis (see also Aydemir
et al. (2006)).

The term “leverage effect” is sometimes used in a broader sense for the general hypothesis that
the causality runs from stock return to volatility. In this paper, we call such a directional
relationship “return-driven”. In this terminology, the leverage effect is only one possibility to
explain a return-driven negative correlation. Another explanation is that bad news might have
different implications for future uncertainty than good news (see, e.g., Glosten et al. (1993)
and Chen/Ghysels (2007)). For instance, price drops could induce more extensive portfolio
adjustments of risk-averse agents than price increases. Bouchaud et al. (2001) suggest that the
apparent return-driven relationship could be due to a retarded effect. In their framework, the
scale for price updates does not depend on the instantaneous price but on a moving average of
past prices which means that current returns lead subsequent volatility changes.

The hypothesis of a volatility-driven negative relationship is known as “feedback effect” (see, e.g.,
Pindyck (1984), French et al. (1987), Campbell/Hentschel (1992)). It rests on the assumption
that volatility is related to systematic risk and is therefore relevant for pricing. If new information
gives rise to an unanticipated increase in volatility, this will also increase risk-adjusted discount
rates. As long as cash flow expectations are not affected, stock prices will go down. However, the
empirical evidence on the impact of volatility on expected returns is controversial. Some studies
report a positive (French et al. (1987), Campbell/Hentschel (1992), Scruggs (1998), Ghysels
et al. (2005), Lundblad (2007), Bae et al. (2007)), others a negative relationship (Campbell
(1987), Nelson (1991)). Often, the link was found to be insignificant and unstable over time
(Glosten et al. (1993), Turner et al. (1989), Harvey (2001)).

! This statement holds although new evidence suggests that the firm level effect might be stronger than previous
work has documented (see Ericsson et al. (2007), Chelley-Steeley/Steeley (2005)).
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The return-driven and volatility-driven effects might well coexist. For instance, an initial price
change could induce a volatility movement which in its turn amplifies the price change with
yet another impulse on volatility (see the model of Bekaert/Wu (2000)). In efficient financial
markets, the participants will try to anticipate these reactions. Therefore, the steps will evolve
almost simultaneously. This makes it difficult to identify the different stages of the process. The
higher the return frequency of the data, the better the chances to gain insight into the origin of
the return-volatility correlation (see Bollerslev et al. (2006)).

Most empirical studies published during the last few years use a framework which incorporates
return-driven as well as volatility-driven effects. The results are mixed. On the one hand, recent
studies by Bollerslev et al. (2006), Giot (2005), and Dufour et al. (2006) report evidence of a
return-driven relationship while the feedback effect is found to be negligible.? On the other hand,
Bekaert/Wu (2000) and Dennis et al. (2006) find support for the volatility feedback argument.

To date, there is hardly any evidence for European countries. Within Europe, the German
financial market appears to be particularly interesting for at least two reasons. Firstly, during
our sample period, DAX futures and options have represented the highest trading volume among
all stock index derivatives in Europe. Thus, high-quality high-frequency transaction data are
available, which is of crucial importance for this study. Secondly, the negative relationship
between index and volatility returns has been particularly strong and stable at the German
market over the last decade (see Hafner/Wallmeier (2007)).

We analyze the lead-lag relationship between DAX returns and at-the-money (ATM) implied
volatilities of DAX options over the 11-year period from 1995 to 2005. The time-stamped tick-by-
tick data enable us to measure index and volatility returns over 5-minute intervals. In contrast to
previous related work (Bollerslev et al. (2006), Dufour et al. (2006)), we study the ATM implied
volatility instead of measures of realized volatility. This allows us to accurately determine the
point in time when changes in volatility occur.? Thus, the lead-lag relationship can directly be
inferred from index and volatility returns over subsequent intervals. Based on these return data,
we can go beyond a correlation analysis to investigate the causal relationship. Our objectives
are: (1) to characterize the contemporaneous relationship between index and volatility returns
taking asymmetry into account, (2) to analyze whether the lead-lag relationship is return-driven
or volatility-driven, (3) to quantify the impact of an innovation in return or volatility and (4)
to estimate how fast return-driven and feedback effects evolve and to draw conclusions for the
information efficiency of the markets involved.

We find that the negative relationship between contemporaneous high-frequency index returns
and volatility changes is almost linear and symmetric in rising and falling markets. A lead-
lag relationship only exists for returns at the highest sampling frequency (5 minutes). This
relationship is return-driven in the sense that index returns Granger cause volatility changes.

? Farlier studies include Christie (1982), Duffee (1995), Figlewski/Wang (2000) and Chan et al. (2003) (based
on regressions) and Nelson (1991), Cheung/Ng (1992), Engle/Ng (1993) and Glosten et al. (1993) (based on
modelling of conditional volatility through various GARCH specifications).

It is well known that ATM implied volatility is an upward-biased estimate of future realized volatility (see,
e.g., Jackwerth/Rubinstein (1996)). We assume that the bias is approximately constant through time and
therefore does not significantly influence volatility returns.
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Impulse-response functions show that a one-time innovation on index return has a significant
impact on implied volatility. The largest part of the implied volatility response occurs immedi-
ately, but we also observe a smaller retarded reaction for up to one hour. A volatility feedback
effect is not discernible. If it exists, it appears to be correctly anticipated by traders in the stock
market, so that the initial DAX return already incorporates the feedback from the expected
volatility reaction.

In the next section, we describe our data and explain how we account for microstructure frictions.
Sections 3 and 4 contain the correlation analysis and the causality tests, respectively. Section
5 concludes.

2 Data

2.1 Raw returns and the smile in option prices

Our data come from the joint German and Swiss options and futures exchange, Eurex.* The
Eurex is the world’s largest futures and options exchange and is jointly operated by Deutsche
Borse AG and SWX Swiss Exchange. Our database contains all reported transactions of options
and futures on the German stock index DAX from January 1995 to December 2005. The average
daily trading volume of DAX options (ODAX) and futures (FDAX) in December 2005 was
166,886 and 117,388 contracts. The options are European style. At any point in time during
the sample period, at least eight option maturities were available. However, trading is heavily
concentrated on the nearby maturities. Trading hours changed several times during our sample
period, but both products were traded at least from 9:30 a.m. to 4:00 p.m.

To calculate the implied volatility for each transaction from the Black (1976) formula, it is
crucial to accurately match the corresponding forward price. As we use time-stamped tick-by-
tick data, matching of option and future prices is straightforward. We apply the method of
Hafner/Wallmeier (2001) to ensure put-call-parity consistent estimates of implied volatilities.
We remove all option prices which violate well-known arbitrage bounds as well as observations
with an implied volatility larger than 150%.

Due to the smile in option prices, differences in implied volatilities of subsequent option prices
can be due to different levels of moneyness defined as the quotient of strike price and forward
price. To restrict the influence of the smile, we only keep at-the-money options with a moneyness
between 0.975 and 1.025. Since a small influence of moneyness might still exist, we estimate the
smile structure each day following the cubic regression approach described in Hafner/Wallmeier
(2001) and Hafner/Wallmeier (2007). We then use the fitted smile function to remove the impact
of moneyness on implied volatilities in the relevant moneyness range of 0.975 to 1.025. More
specifically, let K denote the strike price of an option with time to maturity T'— ¢t. Each trade
is assigned a moneyness according to:

ln(
M(t,T,K) — Tit

1 We are very grateful to the Eurex for providing the data.
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where Fy(T) is the forward price at time ¢ for maturity 7. Thus, ATM options are characterized
by a moneyness of 0. Suppressing the arguments of moneyness, we chose the cubic regression
function:

o =By+ B M+ ByM?+ 33D - M> + ¢, (1)

where o is the implied volatility, 3; i = 0,1,2,3 are regression coefficients, ¢ is a random error,
and D is a dummy variable defined as:

0 M <0
_D: ) —
{1 , M >0

The dummy variable accounts for an asymmetry of the pattern of implied volatilities around

the ATM strike (M = 0).

Let oimp(M,t) denote the implied volatility of an option with moneyness M traded at time t.

AT M

Then, the corresponding ATM implied volatility Timp (t) is calculated as

TATM (1) = 04y (M, 1) — [BlM + ByM? 4+ By - Ms] ’

where [3; are the estimated regression coefficients.

We classify all observations into two maturity groups. The first contains options with a time-to-
maturity between 10 and 30 calendar days, the second contains all observations with an option’s
time-to-maturity between 31 and 60 days. Options with longer maturities are not considered due
to thin trading. Very short maturities below 10 days are also excluded to leave out expiration-day
effects and to avoid biases due to inaccurate estimates of implied volatilities.

Relative changes of implied volatilities (R,) and raw returns of the underlying stock index (Ryg)
over the time period from ¢; to t; are calculated as:
Rv(ti,t]‘) =1In [U%pM(tj)] —1In [O’%}DM(U)] and Rg(ti,tj) =In [S(t])] —1In [S(tz)] y

where S denotes the index level. The values az‘-‘gpM (t) and S(t)are set equal to the last implied
volatility and index level observed before ¢. If the last trade occurred more than 60 seconds
before ¢, the return is not calculated. The results do not change if we further restrict the
maximal distance to 30 seconds. We consider four different sampling frequencies ¢; —t;, namely
5 minutes, 15 minutes, hourly and daily. We are primarily interested in the high-frequency
5-minutes intervals. Results for the longer intervals serve as a means of comparison.

2.2 Microstructure frictions

For data sampled at high frequency, market microstructure frictions have to be taken into
account, particularly fluctuating trading activity, infrequent trading and the bid-ask bounce.

INTRADAY PATTERN OF TRADING ACTIVITY

Trading activity in DAX stocks and DAX options often follows an intraday pattern with three
different periods: (1) in the morning, trading is typically at its maximum at the opening and
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then decreases until lunch; (2) the period after lunch is generally characterized by a peak of
trading activity around the opening of the US stock exchanges; (3) during the last few hours,
activity usually stays at a high level. This intraday pattern may have consequences for the
modelling of conditional volatility. For example, it can produce biases in GARCH specifications
(see Andersen et al. (1999)). Due to the varying conditional volatility, returns in low-activity
intervals are not directly comparable to returns in periods with high trading activity.

In order to correct DAX returns for the intraday trading activity, we follow Andersen et al. (2001)
and model the pattern with a Fourier Flexible Form (FFF'). The main assumption underlying
this approach is that an intraday return can be expressed as the product of a Gaussian white
noise, a daily (or long-term) volatility component and an intraday pattern effect. Using this
decomposition, it is then possible to estimate and filter out the intraday pattern effect using a
FFF regression (see Taylor (2006), Andersen et al. (2001) for more details).

Following Andersen et al. (2001), we only use the polynomial part of the FFF' and break it up
into three third order sub-polynomials to account for three different trading regimes during the
day. Since the intraday pattern is not supposed to be constant over the eleven-year period, we
treat each year separately. We apply this filtering only to return data sampled at the highest
frequencies (5 and 15 minutes). While conceptually relevant, a robustness check shows that the
filtering is not important empirically. Filtered returns turn out to be very similar to raw returns
and all results remain valid when the filtering is omitted.

INFREQUENT TRADING

The problem of infrequent trading arises if intervals without market transactions occur. There
are several ways to handle this problem. Some authors simply set the missing value equal to
the last transaction price (e.g. Stephan/Whaley (1990) or Dennis et al. (2006)), while others
interpolate between the last and the next price to fill the gap (see, e.g., Corsi et al. (2001) for
a discussion). However, the first method has the shortcoming that it leads to a bias in vector
autoregressions, whereas the second approach generates spurious autocorrelations. We therefore
restrain from generating fictitious values to replace non-available market prices. Instead, in each
part of the study we control for the presence of a sufficient number of available lags and discard
data which do not satisfy this requirement.

BID-ASK BOUNCE

As is well known, the bid-ask bounce leads to a negative first order autocorrelation of returns
(Roll (1984)). This spurious autocorrelation comes from successive trades, where one is executed
at the bid, the other at the ask price. The bid-ask bounce effect is more pronounced for DAX
options with their relatively large bid-ask spreads than for DAX futures and the underlying
index. We use the standard method to remove spurious autocorrelation from returns, which
consists in filtering the returns with a MA(1) process (see, e.g., Stephan/Whaley (1990), Easley
et al. (1998) and Gwilym/Buckle (2001)):

Ry =p+et —0Oepq,
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where R; is the observed return, pthe unconditional mean of the return series, # the moving
average coefficient, and e; the innovation of the process. Since the innovations from the MA(1)
process are uncorrelated, we can use them as bid-ask bounce corrected returns. Through the
FFF filtering and the MA(1) correction, raw returns R, and Rg are transformed into adjusted
ry and rg which are used in the empirical tests.

2.3 Descriptive return statistics

Descriptive statistics for DAX and volatility 5-minute log returns (raw returns Rgand R, as
well as adjusted returns rg and r,) are given in Table 1. The changes in implied volatilities
are reported for a time to maturity of 31 to 60 days. Results for the shorter maturity are
very similar. For better comparison, all statistics are given on a daily basis. We compute the
summary statistics for different time-windows: each year, the whole 11-year period (All) and
three subperiods corresponding to the long bullish market of the late nineties (P1: 01/01/1995
to 03/07/2000), the bearish market that followed the end of the tech bubble and the 9/11 attacks
(P2: 03/08/2000 to 03/12/2003) and the bullish market that took place after the beginning of
the Iraq War (P3: 03/13/2003 to 12/31,/2005).

In most years, skewness of DAX returns is slightly negative and kurtosis widely exceeds three.
P—values of the Jarque-Bera test (not reported in the table) unambiguously reject normality on
the 1% level. The bearish market (P2) is characterized by a negative mean, high variance and
kurtosis and strongly negative skewness. Volatility returns have a much higher variance than
DAX returns. The sign of skewness of volatility return varies. Kurtosis typically exceeds three,
so that the null of normality is rejected for all subsamples. The adjustments of raw returns
to account for intraday patterns and microstructure effects have only marginal effects on DAX
returns, whereas the MA(1) correction for variance returns noticeably modifies (unconditional)
variance and skewness.

3 Correlation analysis

3.1 Contemporaneous correlation and asymmetry

The contemporaneous cross-correlation between index and volatility returns is always negative
and highly significant (see Table 2). It is almost the same regardless of whether implied volatil-
ities are computed from the nearest-to-maturity options or options with the following maturity.
The strength of the correlation strongly depends on the return frequency: Daily return correla-
tions vary between -0.6 and -0.8, whereas 5-minute returns have correlation coefficients of about
-0.1 to -0.3. This difference is primarily due to noise in high-frequency returns.
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3.2 Correlation with lagged returns 11

To investigate if the return correlation is asymmetric, we regress volatility changes against both
positive and negative DAX returns according to the following specification:?

Tyt =+ 57’5715 + TS I{TS,t<O} + &4, (2)

where «, 3, 7 are the regression coefficients and [/ {rs.<0} is an indicator variable that takes on
the value 1 if the DAX return is negative and 0 otherwise. Thus, S reflects the slope coefficient
for positive DAX returns, and (5 + ) the corresponding coefficient for negative index returns.
An asymmetry is validated if the 7 estimates are significantly different from zero. We expect 7
to be significantly negative because previous literature documented that the so-called leverage
effect mainly consists of a down-market effect (Figlewski/Wang (2000)). A residual diagnosis did
not reveal systematic deviations from the linear model of equation (2). In particular, including
the index return squared as an explanatory variable does not improve the explanatory power of

the regression model.

In Table 3, we report coefficient estimates and their ¢-statistics based on Newey/West (1987)
adjusted standard errors. Naturally, the R? shows the same dependence on the return frequencies
as the correlation coefficients reported earlier. As expected, all § estimates are significantly
negative. They tend to be the more negative the higher the return frequency. Therefore, a
positive DAX return in a 5-minute interval is typically combined with a larger relative decrease
in volatility than a daily DAX return of equal size. The asymmetry coefficient 5 is mostly
negative, but low and insignificant for high-frequency returns. In contrast, for daily returns, 5
is significantly negative in five out of six combinations of option maturity and sub-period. Thus,
an asymmetry seems to exist only at the level of low-frequency (daily) returns. This observation
is not compatible with a constant, time-independent relationship between high-frequency DAX
and volatility returns. A stream of literature has examined why financial variables might exhibit
this kind of heterogeneity®. Discontinuities and long memory of the latent volatility process have
been put forward as possible explanations (see, e.g., Oswiecimka et al. (2005)).

3.2 Correlation with lagged returns

To examine the lead-lag relationship between index and volatility returns, we calculate the
correlation coefficient of DAX returns in a 5-minute interval ¢ with implied volatility changes
in 5-minute interval ¢ + j, where j € {—250,...,250}. As one trading day typically comprises
about 100 intervals of 5 minutes, the number of 250 leads and lags corresponds to 5 trading days
around t. Calculations are based on all ¢t during the total sample period. Figure 1 shows that the
correlation coefficient is near zero for lagged volatility (j < 0). Thus, the DAX return does not
seem to be systematically related to the preceding change in implied volatility. However, we find
a significantly negative correlation of DAX returns not only with contemporaneous volatility

5 The term “asymmetric volatility” is sometimes used as a short form for the observation that volatility reacts

asymmetrically to index returns: it increases when index returns are positive and decreases when they are
negative. In contrast, our definition of asymmetry is more specific in that it refers to the relative magnitude
of volatility increases and decreases, given that an “asymmetric volatility” in the more general sense exists.

See the discussion about the mono- or multifractal nature of financial returns in Gengay et al. (2005),
Gengay /Selguk (2006) and Mandelbrot/Hudson (2006), among others.
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returns (5 = 0), but also with volatility returns in the next few 5-minute periods. About 1
hour after the stock price shock (5 > 12), the correlation goes back to zero. This observation
supports the hypothesis that implied volatility is adjusted to changes in the index level, so that
the relationship seems to be primarily return-driven. It is important to note that the retarded
reaction of volatility cannot be explained by thin trading and missing volatility returns, because
the return in period ¢ + j is calculated only if transaction prices at the beginning and the end of
the period are available. If the return in ¢ + 2 is available while the ¢ + 1-return is missing, the
implied volatility at the beginnning of period ¢+ 2 (which is available) should already reflect the
price innovation in ¢. Thus, the return in ¢ 4+ 2 should not be influenced regardless of whether
the ¢ + 1-return is available or not.

Correlations between r s('[) and rv(t+j) orjr S(t+j)| for j = -250, ..., 250
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Figure 1: Correlations for the first maturity and 5-minute returns over the to-
tal sample period from 1995 to 2005. The upper panel reports correlations for j =
—250,...,250 while the bottom panel focuses on correlations for j = —12,...,12.

Following Bollerslev et al. (2006), we also examine the correlation between 7g; and the absolute
return |rg;|. In this specification, absolute returns serve as an alternative measure of realized
volatility. It is apparent from Figure 1 that there is no noticeable correlation of absolute returns
before ¢ with DAX return in . The contemporaneous correlation in ¢ is negative, which means
that negative returns are typically larger in magnitude than positive returns. After ¢, absolute
returns are negatively correlated with rg;. This relationship gets weaker the larger the lag, but
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it is recognizable for all j € {1,...,250}. These observations are similar to the US results in
the study of Bollerslev et al. (2006). The correlation series for absolute returns shows that
negative DAX returns typically increase subsequent return dispersion. Again, this is compatible
with a return-driven effect. However, the analysis focuses on total cross-autocorrelations only
and leaves out partial cross-autocorrelations. It could be the case that correlations computed
for lags j > 2 are completely due to the correlation at lag j = 1. A more detailed study is thus
necessary to identify causality and the number of lagged DAX returns which have an impact on

contemporaneous volatility returns.

4 Causality analysis

4.1 Granger causality test

We carry out a Granger causality test, i.e. each variable is regressed on a constant and p of
its own lags as well as on p lags of the other variable in terms of the following VAR(p) vector

autoregression:
P
Ri=c+» &V .Ry;+e, (3)
i=1
where R; is the (2 x 1) vector of DAX and volatility returns, c is the (2 x 1) vector of constants

and ®() is the (2 x 2) matrix of autoregressive slope coefficients for lag i. The two equations of
the vector system (3) specify that:

P P
st = -+ Z ¢511) “rst—it Z ¢§2 “Tut—i T €1t (4)
i=1 i=1
P P
Tt = C2+ Z qbé? “TSt—it Z ¢§2 “Tut—i T2, (5)
i=1 i=1

where ¢; denotes the ith element of the vector ¢ and qbgzk) denotes the row j, column & element of
the matrix ®*). We call (4) the returns regression (RR) and (5) the wvolatility changes regression
(VOR). We estimate both regressions separately employing Ordinary Least Squares (OLS).” In
order to account for heteroskedasticity of the errors €1, and €2, we calculate standard errors
according to the Newey/West (1987) procedure.

If for all s > 0 the mean squared error (MSE) of a forecast of rg ;4 based on (rs¢,...,rs:—p) is
the same as the MSE of a forecast of rg 4 based both on (rgy,...,rs:—p) and (ru s .. Tot—p)s
we conclude that r,; fails to Granger-cause rs: (see, e.g., Hamilton (1994)). Hence testing
if any of the variables leads the other requires testing whether the cross-coefficients gi)gg), gl)
(1 = 1,...,p) are different from zero. Formally, the validity of the return-driven relationship
implies that all matrices ®®, i = 1,...,p are lower triangular. In the same vein, the validity of
the volatility-driven relationship requires all matrices @, i = 1,...,p to be upper triangular.

In the case where all matrices ®®, § = 1,...,p are diagonal, both explanations have to be

" For a covariance-stationary process, this estimation is consistent, see Hamilton (1994).
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rejected. The two explanations could also cohabit, which is the case if some matrices &) are
full. To test which of the different cases is the most realistic, we estimate a series of unrestricted
and restricted regressions and compare their explanatory power. The unrestricted regression
makes use of the full set of variables (rs;—; and 7,;—;) to explain rg; (RR)and r,;(VCR),
while the restricted version only uses lagged values of the regressand as explanatory variables.

Table 4 summarizes the results of the Wald F—test for the eleven-year sample period and each
sampling frequency for up to five lags (p = 5).® The F—statistics is used to test whether
the return-driven or volatility driven relationship can be rejected. In each case, we report
the p—value of the F'—test (first line) and the number of observations included in the regression
(second line). When more lags are considered, the number of complete return series and therefore
the number of observations sharply decreases.” This is why we focus our attention primarily on
the case of p = 1. We regard the rejection of an effect as more reliable if the p—values for both

option maturities are significant.

The results provide evidence in favor of a return-driven relationship. At the highest sampling
frequency, the null hypothesis that past returns do not contribute to the explanation of current
changes in implied volatility is always rejected at least at the 1% significance level. This causality
is discernible for intervals of up to 60 minutes. The same results hold true in yearly subsamples
except for hourly data. The return-driven relationship for hourly data only comes from the
subperiod 03/08/2000 to 03/12/2003. The test statistics do not give evidence for a volatility-
driven effect. Past volatility changes do not significantly add to the explanatory power of past
index returns in explaining current index returns!’. Results for periodical subsamples are similar
to those for the total sample period."! The only notable difference is that we find a causality
running in both directions in the bearish market from 2000 to 2003 when considering volatility
computed from options with the second nearest time-to-maturity. In fact, the significant daily
return-driven relationship that we find for the total sample comes entirely from this period. In
all, we conclude that the lead-lag relationship of DAX returns and implied volatility changes is
compatible with Granger causality running from return to volatility.

The results achieved so far do not rule out the possibility that a feedback-effect was not detected
because it occurs in a more subtle fashion. For instance, one may suspect that only large volatility
changes have an impact on returns. To investigate if such non-linear feedback-effects exist, we
performed a non-parametric causality test introduced by Baek/Brock (1992) and extended and
improved by Hiemstra/Jones (1994) and Diks/Panchenko (2005). This test examines if the
probability distribution of future index returns is different if the information set contains either
the history of both DAX and volatility returns or the history of DAX returns alone. The test

8 According to the Akaike and Schwartz information criteria, the optimal number of lags varies between 2 and

5 for sampling frequencies of 5 and 15 minutes and is equal to 1 for hourly and daily data.

The number of hourly data is relatively low, because we calculate hourly returns only if a transaction price is
available from the last 60 seconds (see Section 2).

There is weak evidence in favor of a volatility-driven effect when considering 5-minute returns. However, this
result depends on the number of lags and the time-to-maturity. Therefore, its economic significance seems
questionable.

The results for the three subsamples P1 to P3 are available on request.
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4.2 Contemporaneous versus lagged relationship 16

statistics of the test by Diks/Panchenko (2005) (not shown here) do not provide evidence in
favor of a non-linear feedback effect.

4.2 Contemporaneous versus lagged relationship

The finding of a return-driven effect in high-frequency data leaves open the question of how
important this lead-lag-relationship is compared to the strong contemporaneous correlation of
index and volatility return found in Section 3. To enable this comparison, we extend the volatility
changes regression (5) by adding contemporaneous DAX returns as explanatory variable:

P p
Tut ="+ Z Gi1Tst—i t+ Z G7o Tot—i + Brst + €. (6)
1=1 i=1

We compare the unrestricted model (6) with two restricted versions:

e restricted model 1, characterized by 8* = 0, and

e restricted model 2, characterized by qSZl =0 Vi=1,...,p.

Restricted model 1 is identical to the volatility changes regression of the last section, whereas
restricted model 2 replaces lagged index returns by the contemporaneous index return as ex-
planatory variable. Using OLS with Newey/West (1987) standard errors, we estimate the three
regressions for all sampling frequencies and the two times-to-maturity. We also decompose the
variance V of volatility changes according to:

P p
V(res) = VO _ ¢i1-rsii+ Y &fa-rosi+ B rss+er)
=1 =1
= V(roy) - (VL+VCR+COV +VE), (7)

where

p p

VL = VO _ i1 rsei+ > Ofa Tori)/V(res),
=1 =1

VCR = V(6%rs4)/V(rvs),

p p

COV = 2Cov(>_¢f1 Tspit D Ora Tt irB7T5e)/V(rus),
=1 =1

VE = V(e)/V(rys).

VL, VCR, COV and V E measure the percentage of the overall variance of r,; explained by
lagged DAX and volatility returns (V' L), contemporaneous DAX returns (VCR), covariance
between lagged DAX and volatility returns and contemporaneous DAX returns (COV') and
variance of the residuals (VE).

In the first three columns of Table 5, we report the sampling frequency, the number of lags
employed'? and the number of valid observations. The p—values 1 and 2 refer to a test of the

12 The number of lags is taken to be alternatively p = 1 or the optimal choice indicated by the Akaike and
Schwartz criterion. For hourly and daily data, the latter choice is equal to p = 1.
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hypothesis that the MSE of a forecast of r,; based on the unrestricted model is the same as
the MSE based on restricted models 1 and 2, respectively. In the case of restricted model 1,
this hypothesis is always rejected at the 99% confidence level. Thus, adding rg; to the set
of regressors improves the explanatory power of the model. This finding confirms that part
of the relationship occurs contemporaneously. In the second comparison we test whether the
model with lagged and contemporaneous returns (unrestricted model) has additional explanatory
power above restricted model 2 which only uses contemporaneous index returns. Again, with
one exception, all p—values are below 1%. Thus, even after controlling for contemporaneous
returns, a significant part of volatility changes can be traced back to leading index returns.
For high-frequency data, a substantial part of the variance of r,; can be attributed to leading
returns (VL). At lower frequencies, the lead-lag-relationship is negligible, and the variation of
Ty, is primarily attributed to contemporaneous index returns (VCR).

4.3 Impulse-response functions

As a natural extension of the Granger causality analysis, we use impulse-response functions
(IRF's) to illustrate the dynamic relations between DAX and implied volatility returns. An IRF
describes the impact of a one-time impulse in one variable on future values of the other variable.
It allows us to assess how important the impact is and how long it lasts. More precisely, let
subscripts 7 and j refer to DAX and volatility returns. We denote by s a forecast period starting
from date t (forecast horizon ¢ 4+ s) and assume that the state of the system as of date ¢ is
known. Then, IRF is a function of s whose values correspond to the revision in the forecast of
7i,4+s induced by the information that the value of 7, is higher than expected (gj¢ > 0) (see
Hamilton (1994), p. 318-323).

Theoretically, IRFs can be obtained from the coefficients of the vector MA(co) representation
of the original VAR:
Ri=c+e,+¥1 -0 1+Por-6020+... (8)

The row 4, column j (7, j € {1,2}) element of W, is the response of the ith variable at time ¢+ s
to a one-time shock on the jth variable at time ¢t. We obtain estimates of ¥4 by simulation of
the original VAR (3)!? (see Hamilton (1994), p. 319, for details).

If the innovations €; ; and ¢;; are correlated, knowledge of € ; has implications for the distribution
of £; ;. These implications are relevant for revising the expectation of r; ;1 ;. Hence, setting ¢; ; to
zero in the simulations would lead to misleading IRFs. Clearly, the innovations €1 and €2 in
the returns regression (4) and the volatility changes regression (5) are indeed correlated (see
Section 3). Therefore, we orthogonalize the impulses which ensures that direct and indirect
effects of an impulse are considered.™

13 As before, we estimate the autoregressive coefficients of the VAR system 3 by OLS with a maximal lag p
selected according to the Akaike and Schwartz information criteria. In the simulation, we set Ri—1 = Ry—_2 =
..=R4_p =0, =1 and &, = 0 and simulate the system (3) for times ¢,t + 1,t + 2, ...,t + q.

4 The orthogonalization is based on a triangular factorization of the estimate of the variance-covariance matrix
Q of €;. See Hamilton (1994), p. 320, for details.
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Response of VR to DR Response of VR to DR
(10<TtM<30 days) (30<TtM<60 days)

Figure 2: Orthogonalized impulse responses of volatility returns (VR) to DAX
returns (DR). The panels on the left (respectively on the right) display the IRFs for the
volatility computed from options with the a time-to-maturity ranging from 10 to 30 days (30 to
60 days).

Figures 2 and 3 illustrate the orthogonalized IRFs for DAX and volatility return innovations.
The magnitude of the shock is fixed at one standard deviation of the uncorrelated (orthogonal-
ized) innovation. We add two-standard-error bands from Monte Carlo simulations with 100’000
paths. The horizon s varies from 4 to 12 intervals depending on the sampling frequency. This
corresponds to a range of one hour (5-minute data) to 5 days (daily data). The units on the
vertical axis are in DAX or volatility return standard deviations.

The IRFs for responses of volatility return to an impulse of DAX return are typically negative
(see Figure 2). For 5- and 15-minute data, the responses directly after a shock have a magnitude
of about —0.1 to —0.2 standard deviations. The IRFs then remain significantly negative for about
15 to 45 minutes. As expected, the responses are less important for lower frequencies. Figure 3
shows that the impact of a volatility shock on DAX returns is very limited. This observation is
compatible with our findings of Section 4.
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Figure 3: Orthogonalized impulse responses of DAX returns (DR) to volatility
returns (VR). The panels on the left (respectively on the right) display the IRFs for the
volatility computed from options with the a time-to-maturity ranging from 10 to 30 days (30 to

60 days).
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5 Conclusion

It is well known that index returns are inversely related to volatility changes. The relationship
is so strong that it constitutes an important stylized fact in finance. Nevertheless, the origin
and the causes of the effect are not yet well understood, which is particularly true for financial
markets in Europe. In this paper, we analyze the return-volatility relationship at the German
market. We calculate return series for 5-minute intervals from tick-by-tick DAX option and
futures data over the time period from 1995 to 2005. We also consider lower return frequencies
for the purpose of comparison. Our volatility measure is the implied volatility of at-the-money
(ATM) options. This allows us to more accurately detect changes in volatility than previous
studies which use measures of realized volatility. In addition, as ATM implied volatilities can
be determined independently of the underlying asset return, index and volatility returns can
be modelled jointly in a VAR model. This provides a flexible framework for running Granger
causality tests and computing impulse-response functions.

We find that the contemporaneous inverse relationship in high-frequency data is linear without
any systematic differences between rising and falling markets. A lead-lag relationship exists only
in high-frequency data. The relationship is return-driven in the sense that index returns Granger
cause volatility changes. This causal relationship is statistically and economically significant and
can be clearly separated from the contemporaneous correlation. A volatility feedback effect does
not show up. Either it does not exist, or the market promptly incorporates all direct and indirect
impulses into market prices so that the feedback effect fully evolves within the 5-minute intervals.

Our paper does not account for jumps either in the index level or the (implied) volatility process.
The relationship around such discontinuities could offer further insight into the nature of the
effect. The behavior of the relationship through time could also be of interest, because it is
closely related to the pricing of volatility and the dynamics of the volatility risk premium. But
the most important topic for further research still seems to be the question why this strong effect
exists and which economic fundamentals are effectively driving it.
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