
Properties of high frequency DAX returns: Intraday patterns,
Jumps and their impact on subsequent volatility

Philippe Masset�

March 2008

Abstract

This paper analyzes the behavior of the German DAX index intraday returns. We devote
particular attention to three related empirical issues. First we provide an up-to-date char-
acterization of the DAX intraday volatility patterns. They are mostly W-shaped with peaks
at the opening, at 2.30pm and before the closing. We �nd some evidence suggesting that the
implied volatility also follows some deterministic patterns over the trading day. Second we
identify jumps in DAX returns. On jump days, they account on average for 15% to 25% of
the daily variance. Jumps also tend to cluster and are not evenly distributed throughout the
trading day. Third we estimate the impact of a price jump on volatility. We consider di¤erent
proxies for volatility: absolute returns, implied volatility and realized volatility. Our results
indicate that negative jumps trigger a strong upward correction in volatility. This correction
starts just after a jump occured and persists during up to 25 minutes. On the other hand,
positive jumps seem to have a much less signi�cant impact on volatility. These results hold
for all volatility proxies but they are more signi�cant when we consider the implied volatility.
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1 Introduction

In this paper, we describe and investigate some phenomena and regularities that emerge when
observing high-frequency DAX returns. We do not focus on the sign of returns but rather on
their amplitude (or volatility). The sign of returns should indeed be unpredictable according to
the E¢ cient Market Hypothesis (Fama (1970)).1 Furthermore, empirical evidence suggests that
their amplitude displays some regularities (Cont (2001) and Granger & Poon (2002)).

The amplitude of intraday returns mainly depends on the interaction between two driving vari-
ables: the trading activity and the volume of information that reaches the market at a particular
moment of the day. The �rst mostly determines the speed at which prices are updated, while
the second has a direct e¤ect on the amplitude of individual price changes. There is obviously
a link between these variables. In the absence of signi�cant news, less traders are active on the
market. Similarly, the way new information is re�ected in the prices depends on the number of
active traders. There is a vast literature that directly models either the time duration between
trades2 or the process by which equilibrium prices are reached3 ;4. Unlike these, we adopt what
can be considered as a reduced form approach and directly study some particular features of
high-frequency price changes. Our aim is to characterize the so-called volatility intraday patterns
on the German market, to identify price discontinuities (jumps) and to analyze their statistical
properties and their impact on volatility.

The way trading activity spreads throughout the day is our �rst object of study. Trading activity
and the amplitude of price changes are linked together: in general, the higher the activity at a
particular moment of the day, the higher is the intraday variance at that moment. The literature
on intraday volatility patterns traces back to Wood et al. (1985) and was mostly concerned
with US equity markets and FX markets as these are open 24 hours a day.5 These studies
have shown that the patterns are typically U-shaped. The highest level of trading activity is
reached just after the opening and before the market closes. During lunchtime, there are only
few active traders and therefore the variance in this period remains rather low. The existence
of these regularities have both theoretical and practical consequences. Notably, it is crucial to
�lter out intraday patterns from raw returns before trying to �t a parametric volatility model;
otherwise the estimates might be severely biased (Andersen et al. (1999)). Moreover, intraday
traders have concerns about very short-term moves and are obviously a¤ected by higher intraday
volatilities as they may lead to rapid losses.

1 This is not exactly the case for high-frequency returns as they are known to exhibit a signi�cant negative
�rst-order autocorrelation. See, e.g., Andersen & Bollerslev (1997a) or Dacorogna et al. (1997).

2 Two recent contributions to this literature are Fernandes & Grammig (2005) and Meitz & Teräsvirta (2006).
3 See, e.g., the survey article of Madhavan (2000).
4 A related literature, which traces back to Clark (1973), is concerned with the so-called mixture of distribution
hypothesis. See also Tauchen & Pitts (1983) and Bauwens et al. (2006).

5 See Wood et al. (1985) and Harris (1986) for some early discussions on intraday patterns for equity markets; a
recent contribution is Tian & Guo (2006), who provide an up-to-date literature review and also study intraday
patterns on the Shanghai Stock Exchange. To the best of our knowledge, the only articles studying intraday
patterns on the German market are Kirchner & Schlag (1998) and Ozenbas et al. (2002). For FX markets,
see, e.g., Muller et al. (1990), Baillie & Bollerslev (1991), Dacorogna et al. (1993) and Andersen & Bollerslev
(1997b).
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New information impacts the market di¤erently depending on its importance and whether it is
expected or not. For instance, there are recurrent news that reach the market each day with
a regular timing and deliver essentially the same kind of information. Notably, the overnight
evolution of US and Asian markets has an impact on the opening of European markets. Similarly,
the mid-afternoon period is characterized by the release of information from the USA and the
opening of the NYSE and the Nasdaq. Because of its recurrent nature, this kind of information
directly a¤ects the intraday volatility patterns. On the other hand, there are many unexpected
pieces of information about �rms, economic situation or investor sentiments, that have a unique
and important e¤ect on prices. The release of such news often generates price jumps. Our second
objective is to identify and characterize those jumps on the German market. We make use of
recent advances in the study of so-called stochastic volatility semimartingale (SVSM) processes
to identify the jumps.6 We then study their occurrences, size and timing. Jumps are typically
located in the tails of the return distribution and are thus very relevant for risk management
purposes. They also have a strong impact on the ability to properly hedge a derivative position
as it is not possible anymore to replicate it perfectly.

Our third objective is to analyze the relationship among returns and changes in volatility when
there are price discontinuities. Knowledge of this relationship is a key ingredient for e¤ective
option pricing and it might also help establishing innovative trading strategies. In the continuous
case (i.e. in the absence of jumps), this relationship has already attracted much interest from
researchers. Volatility changes have typically been found to be negatively and asymmetrically
related to returns (Black (1976) and Christie (1982)). Two theories have been advanced for
explaining this e¤ect: the leverage and the feed-back explanations. The �rst assumes that past
returns have a predictive power on futures volatility changes, while the other implies the opposite
chain of reactions.7 The causal relationship remains mostly unclear when considering daily data
(see Bouchaud et al. (2001)). When switching to a high-frequency framework, one observes
that the relation is mostly return-driven. Previous returns have an inverse impact on subsequent
volatility changes (Bollerslev et al. (2006) and Masset & Wallmeier (2007)). The relationship
between price jumps and subsequent volatility changes has not yet been investigated. Though
an often encountered (sometimes explicit but mostly implicit) assumption is that both price
and volatility jump simultaneously. We test if this assumption holds. In particular, we analyze
the impact of a price discontinuity on contemporaneous and subsequent volatility changes. If a
jump is expected to have a persistent impact on the magnitude of subsequent returns and if the
investors are fully rational, the implied volatility should jump (almost) simultaneously.

For our inferences, we make use of a high-quality database, which covers all transactions involving
options and futures on the German market from January 1995 to December 2005.8 There is a
one-to-one relationship between future prices and actual index levels; hence we can estimate DAX
levels with a very high level of precision. This is obviously crucial for the analysis of intraday

6 See, e.g., Andersen et al. (2001b), Andersen et al. (2001a), Barndor¤-Nielsen & Shephard (2002), Andersen
et al. (2006b) and Bandi & Russell (2007).

7 For a detailled discussion of these two theories, see, e.g., Bekaert & Wu (2000), Bollerslev et al. (2006) and
Masset & Wallmeier (2007).

8 Over this period, DAX futures and options have represented the highest trading volume among all stock index
derivatives in Europe.
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patterns and the identi�cation of price discontinuities. We compute the implied volatility from
option prices. Implied volatilities present several advantage over other volatility proxies (like
squared returns or realized variance). They do not depend on actual index returns and they
allow us to accurately determine the point in time when changes in volatility occur. It is thus
possible to gauge precisely the impact of a price jump on the volatility process.

This paper contributes to the existing literature in several ways. First, we provide a precise and
up-to-date description of the intraday patterns for squared returns and for implied volatility
on the German market. The patterns for squared returns are mostly W�shaped: returns are
especially large at the opening, at 2:30 p.m. and at the closing. We also �nd clear-cut patterns
for the implied volatility; they have a J�shape: implied volatility is typically lower during the
lunch than during the rest of the day and it usually reaches a high when the market closes.
Second, we characterize the occurrences of jumps and their statistical properties. On jump
days, price discontinuities account on average for 15% to 25% of the daily return variance and,
on some days, a jump might even explain as much as 80% of the daily variance. As already
noticed by Andersen et al. (2007), jumps tend to cluster. Furthermore, the probability of a jump
seems to be higher in the early morning, at 2:30 p.m. and in the late afternoon. Third, we show
that the impact of price discontinuities on both implied and realized volatility is considerable.
Negative jumps trigger a strong increase in volatility. In particular, about 20 to 25 minutes are
needed by the implied volatility process to fully incorporate the e¤ects of such a jump. On the
other hand, positive jumps have only a limited impact on volatility.

Our paper is organized as follows. In the next section, we describe our dataset and discuss some
issues related to high-frequency frictions. The methodology used to estimate intraday patterns
and to identify price discontinuities is presented in section 3. Intraday patterns for squared
returns and for implied volatility are discussed in section 4. In section 5, we study the number
of jumps, their importance and their timing. Section 6 is devoted to the analysis of the impact
that a jump has on volatility. Section 7 concludes.

2 Data

Our data come from the joint German and Swiss options and futures exchange, Eurex.9 The
Eurex is the world�s largest futures and options exchange and is jointly operated by Deutsche
Börse AG and SWX Swiss Exchange. The database contains all reported transactions of options
and futures on the German stock index DAX from January 1995 to December 2005. The average
daily trading volume of DAX options (ODAX) and futures (FDAX) in December 2005 was of
166; 886 and 117; 388 contracts, respectively. The options are European style. At any point
in time during the sample period, at least eight option maturities were available. However,
trading is heavily concentrated on the nearby maturities. The contract values amount to 5 euros
(ODAX). Trading hours changed several times during our sample period, but both products were
traded at least from 9:30 a.m. to 4:00 p.m.

9 We are very grateful to the Eurex for providing the data.
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Figure 1: Period de�nition.

We split the observation period in eight subsamples according to two criteria: (i) market con-
ditions (bull or bear) and (ii) trading hours. This has no impact on the identi�cation of jumps
because the test statistics used to detect jumps consider each day separately. It also makes no
sense to use data that have di¤erent opening or closing hours when estimating intraday patterns.
Furthermore, this gives us the opportunity to test if intraday patterns and jumps share the same
features in di¤erent market conditions. Between 1995 and 2005, we identify three broad periods
of either bullish or bearish market, periods 1 to 3 in �gure 1. The �rst period corresponds to
the long bull market between 1995 and 2000, which ended with the burst of the tech bubble on
March 10th, 2000. The second period, which covers years 2000 to 2003, saw the market su¤er
severe losses, caused by the post-bubble correction and was further reinforced by the September
11th terrorist attacks. The beginning of the Iraqi war on March 20th, 2003 marked the beginning
of a new bull market, which is still running (as of December 2005). We �nally split once again
each period such that all observation days in a subperiod have the same trading hours.10

2.1 Computation of DAX and implied volatility levels

We use the relationship between futures and spot prices to estimate the underlying DAX index
levels.11 Similarly, we calculate the implied volatility from the Black & Scholes (1973) formula.
In order to obtain correct implied volatilities, it is crucial to accurately match the option price
and the corresponding underlying price. As we use time-stamped tick-by-tick data, matching of
option and DAX index levels is straightforward. We apply the method of Hafner & Wallmeier
(2001) to account for dividend e¤ects and to ensure put-call-parity consistent estimates of implied
volatilities. We remove all options that violate the arbitrage bounds or have implied volatilities

10 The start and end dates of each subperiod are the followings: 01/01/1995 - 05/19/1995 (Period 1A), 05/22/1995
- 03/27/1997 (1B), 04/01/1997 - 09/17/1999 (1C), 09/20/1999 - 03/07/2000 (1D), 03/08/2000 - 06/01/2000
(2A), 06/02/2000 - 03/12/2003 (2B), 03/13/2003 - 11/18/2005 (3A), 11/21/2005 - 12/30/2005 (3B).

11 We use futures to infer DAX levels as some evidence suggests that futures should react more rapidly to news
than the underlying (Hasbrouck (2003)). Furthermore, there is a direct link between options and futures as
the latter are usually used to hedge the �rsts (Liu et al. (2007)).
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higher than 150% (Hafner & Wallmeier (2001)). We consider only options with a time-to-
maturity longer than 10 calendar days to avoid expiration-day e¤ects and because estimates for
implied volatility are known to be unstable for shorter maturities.12 Options with a very distant
maturity are much less liquid and it is di¢ cult to account properly for term structure e¤ects.
Therefore we keep only options that have a time-to-maturity no longer than 3 months. There
are several di¢ culties to accurately estimate the implied volatility of deep in-the-money (ITM)
and deep out-of-the-money (OTM) options. Such options are prone to be a¤ected by errors in
measurement (Hentschel (2003)). Therefore we do not use options with a moneyness lower than
0:85 or larger than 1:15. This moneyness interval is relatively wide as we want to have the
largest number of valid observations in our sample.

Implied volatilities are not constant across moneyness levels and also vary with the time-to-
maturity. OTM put options typically have higher implied volatilities than at-the-money (ATM)
put options. This phenomenon is known as the volatility smile or volatility smirk in the �nance
literature (see, e.g., Rebonato (2004)). The existence of an implied volatility term structure is
a related issue: the implied volatility tends to decrease when the option approaches maturity.
Consequently, one cannot directly use the implied volatilities estimated from options with di¤er-
ent features (maturity and strikes) to construct a homogeneous time-series of implied volatility
for the underlying. This implies that a change in implied volatility between two subsequent
trades can either be due to a change of its fundamental level or to a di¤erent moneyness or
time-to-maturity. Hereafter, we detail how we proceed to rule out smile and term structure
e¤ects.

Smile correction

We �rst estimate the smile structure each day following the cubic regression approach described
in Hafner & Wallmeier (2001) and Hafner & Wallmeier (2007) and, then, we use the �tted
smile function to remove the impact of moneyness on implied volatilities. More speci�cally, let
K denote the strike price of an option with time to maturity T � t. Each trade is assigned a
moneyness according to:

M(t; T;K) =
ln
�

K
Ft(T )

�
p
T � t

;

where Ft(T ) is the forward price at time t for maturity T . Thus, ATM options are characterized
by a moneyness of 0. Suppressing the arguments of moneyness, we chose the cubic regression
function:

� = �0 + �1M + �2M
2 + �3D �M3 + "; (1)

where � is the implied volatility, �i; i = 0; 1; 2; 3 are regression coe¢ cients, " is a random error,
and D is a dummy variable de�ned as:

D =

(
1 ; M > 0

0 ; M � 0
:

12 These points are discussed in De Jong & Donders (1997). In other studies, the last 7 to 10 days are usually
removed. For instance, Dennis et al. (2006) removed options with a maturity of one week or less; Masset &
Wallmeier (2007) took only options with at least 10 days to maturity.
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The dummy variable accounts for an asymmetry of the pattern of implied volatilities around
the ATM strike (M = 0).

Let �imp(M; t) denote the implied volatility of an option with moneyness M traded at time t.
Then, the corresponding ATM implied volatility �ATMimp (t) is calculated as

�ATMimp (t) = �imp(M; t)�
hb�1M + b�2M2 + b�3D �M3

i
; (2)

where b�i are the estimated regression coe¢ cients.
Term structure correction

We estimate the term structure of implied volatility using the linear regression model:13

�ATMimp (t) = �0 + �1(T � t) + �2D2 � (T � t) + u; (3)

where �i; i = 0; 1; 2 are regression coe¢ cients, u is a random error, and D2 is a dummy variable
de�ned as:

D2 =

(
1 ; T � t > 60
0 ; otherwise

:

The dummy variable gives more �exibility to the speci�cation as it allows the trend of the term-
structure to be di¤erent for options with the longest time-to-maturity. The implied volatility
corresponding to a 30-day constant time-to-maturity option can then be calculated as:

�ATM;CTtMimp (t) = �ATMimp (t)� [b�1(T � t� 30) + b�2D2 � (T � t� 30)] ; (4)

where b�i are the estimated regression coe¢ cients.
2.2 High-frequency frictions

Previous operations leave us with two time-series, one of implied volatility and another of DAX
levels. Both series are recorded at irregular time intervals. In order to get homogeneous time-
series, we resample the data by aggregating them over a particular sampling frequency. There
is always a trade-o¤ between the amount of information that can be inferred from the data
and the noise that they might contain (see Hansen & Lunde (2006)). In order to keep as much
information as possible from the original data, the highest possible sampling frequency should
be considered. However, this is at a cost as it exacerbates the impact of high-frequency frictions
and thus augments the noise-to-signal ratio.14 DAX futures are very liquid and have a small

13 We also consider non linear models but the �nal results remain mostly unaltered.
14 For a discussion of optimal sampling procedures, see, e.g., Ait-Sahalia et al. (2005), Zhang et al. (2005) and
Bandi & Russell (2008).
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bid-ask spread. Thus, a very high sampling frequency could be selected. Unfortunately, DAX
options are less liquid and have a larger bid-ask spread. We therefore decide to sample the
data each 5 minutes. This consensual choice is indeed quite common in the literature (see, e.g.,
Bollerslev et al. (2006)).

The estimated DAX level for each 5-minute interval is set equal to its average over the last
minute of the interval. In very few cases, there is no observation in the last minute of an interval
and thus the DAX level cannot be estimated, implying that the corresponding return cannot
be computed. This is an issue as the procedure we employ to identify price discontinuities (see
section 3.2) requires a complete series of returns. In order to solve this, we complete the original
series and estimate the prevalent DAX level by interpolating between the average DAX levels
over the previous and the next minute with valid observations.15 As stated above, options are
less liquid than futures: in many intervals, there is no observation at all and consequently it
is not possible to calculate an implied volatility. We do not replace these missing values for
two reasons. First, we do not necessarily need a complete series of implied volatilities as they
are not required for identifying price jumps. Second, when analyzing the relationship among
DAX jumps and volatility changes, we want to avoid spurious results caused by the presence of
�ctitious (interpolated) values. Consequently, to conduct our inferences in the next sections, we
employ only the intervals in which we have a valid observation for the implied volatility.

Log-returns of implied volatility and of the underlying stock index are calculated as:

Rv;tj = ln
�
�ATMimp (tj)

�
� ln

�
�ATMimp (tj�1)

�
and RS;tj = ln [S(tj)]� ln [S(tj�1)] ;

where �ATMimp (tj) is the implied volatility and S(tj) denotes the index level in the j-th 5-minute
interval on day t. Rv;tj is only calculated if we have an observation at times tj and tj�1. We
remove overnight returns (Gwilym & Buckle (2001)) and the �rst return of each day (Bollerslev
et al. (2004)).

We eventually devote some consideration to the impact of the bid-ask spread on returns. As is
well known, the bid-ask bounce leads to a negative �rst order autocorrelation of returns (Roll
(1984)). This spurious autocorrelation comes from successive trades, where one is executed
at the bid, the other at the ask price. As already stated, futures have a narrower bid-ask
spread than options. It is thus not surprising to �nd out that this e¤ect is very pronounced
for volatility returns but absent from DAX returns.16 We use the standard method to remove
spurious autocorrelation from volatility returns only. This method consists of �ltering returns
with a MA(1) process (see, e.g., Stephan & Whaley (1990), Easley et al. (1998) and Gwilym &
Buckle (2001)):

Rv;tj = �v + ev;tj � �vev;tj�1 ,

where Rv;tj is the observed implied volatility return, �v the unconditional mean of the observed
returns series, �v the moving average coe¢ cient, and ev;tj the innovation of the process. Since
the innovations from the MA(1) process are uncorrelated, we can use them as bid-ask bounce
corrected returns. Through this correction, raw implied volatility returns Rv;tj are transformed
into adjusted log-returns rv;tj , i.e. rv;tj = ev;tj .

15 A robustness check shows that this procedure has no impact on the estimation of the intraday patterns.
16 First order autocorrelation coe¢ cients are �0:4159 and 0:0170 for volatility returns and DAX returns.
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3 Estimation of the intraday patterns and jump identi�cation

3.1 Methodology for estimating intraday patterns

Intraday patterns are just a graphical and quanti�ed representation of how the activity on the
market �uctuates during the trading day. The level of activity depends on the number of active
traders and the quantity and type of information reaching the market at a particular time. When
there are more active traders, prices change more quickly and the returns�variance computed
over a �xed-length interval increases.17 This implies that intraday patterns can be estimated on
the basis of the amplitude of price changes computed at di¤erent moments of the day. These
patterns can also be considered as a time deformation in the sense of Clark (1973) as they
deliver some information about the speed at which business time �ows. When dealing with a
return series sampled in the usual clock time, it is crucial to �lter intraday patterns out from
raw returns in order to avoid biases in the modelling of conditional volatility (Andersen et al.
(1999)).

To study and estimate intraday patterns, their in�uence has to be isolated from the original
series of returns. A usual assumption is that observed high-frequency returns can be split into
two parts: an unpredictable (innovation) component and a volatility component. The volatility
component itself is the product of both the prevalent daily volatility and an intraday volatility
factor. The return in interval j on day t can thus be expressed as:

Rtj = �t � �j � ztj , (5)

where �t is a measure of the latent volatility on day t, �j is a factor that accounts for the
proportion of a trading�s day return variance that is attributed to interval j, and ztj is an
innovation term with mean zero and variance one. Intraday patterns should re�ect some typical,
inherent, characteristic of the activity �ow during trading hours; therefore they are not expected

to change from one day to another. We de�ne standardized returns rtj as rtj =
Rtj
�t
, where �t

can be estimated either from a parametric model (e.g. a Stochastic Volatility or a GARCH
model) or a non-parametric one (e.g., the realized volatility, see section 3.2). Assuming no
covariation among �t, �j and ztj , the variance of Rtj can be calculated as V ar(Rtj ) = �2t � �2j
(as V ar(ztj ) = 1) and the variance of rtj is:

V ar(rtj ) = �
2
j : (6)

Further, ztj has mean zero and thus the variance can be equally computed from:

V ar(rtj ) = E(r
2
tj ) = N

�1
NX
t=1

r2tj = �
2
j : (7)

17 Unless returns from successive trades cancel out, the overall price variation will indeed be higher. Note also
that this does not mean that the volatility of a single trade should increase.
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This expression suggests a simple way for estimating the intraday volatility factors. As an
alternative, one may instead focus on the expression

��rtj ��, which is less in�uenced by extreme
values. If ztj comes from a normal distribution, we have that E(

��rtj ��) =q 2
��j and thus we getb�j = p

�
2 � E(

��rtj ��) as an estimate for �j . Nevertheless, the assumption that the innovations
ztj are normally distributed is very disputable. Therefore, we opt for an estimation of the
intraday patterns based on (7).

The summation in (7) considers a set of N successive days; the larger N , the more precise the
estimate for b�j will be. Though, if the patterns are not stable through time18, the complete
sample has to be split into homogeneous subsamples. Eventually, the factors�estimates remain
noisy and sensitive to outliers. Some erratic changes in the patterns when moving from an
interval j to the next interval j + 1 do not have much economic content. They can be caused
by some large returns in a few days, either in interval j or j + 1. Therefore, it is preferable to
smooth the original estimates. Andersen et al. (2001c) recommend Fourier �exible functions
(FFFs):19

�j =
KX
k=0

�kj
k +

DX
i=1

�iIj=di (8)

+
PX
p=1

[�p cos(
2�jp

N
) + �p sin(

2�jp

N
)]:

The FFF model (8) consists of three parts. The �rst is based on a polynomial structure,
which aims at modelling the general trend of the patterns over the trading day. If assuming
a unique homogeneous trend for the whole trading day seems too unrealistic, the polynomial
can be broken in several subpolynomials in order to account for di¤erent trading regimes. The
second part shows a summation of dummies; their purpose is to model particular phases of the
trading day which exhibit unusual characteristics and are thus di¢ cult to capture through the
polynomial part (e.g. the opening or the closing of the market). The last part is based on a
series of sinusoidal functions, which work best when the series to be modelled exhibits cyclical
behaviors. To obtain a smooth estimate of the intraday patterns, we further add an error term
on the right hand-side of model (8) and then estimate the complete model by Ordinary Least
Squares (OLS). Robust standard errors for the coe¢ cients can be obtained using the Newey &
West (1987) method.20

18 This would be the case either if the trading hours in the home country or abroad (e.g. in the USA) or if the
investors�trading habits have changed over time.

19 See also Andersen & Bollerslev (1997b).
20 Dacorogna et al. (1993) propose another way to deal with intraday patterns. They suggest resampling the
data in so-called business time. In their setting, time-intervals are de�ned as some proportion of the daily
returns�quadratic variation. This procedure mechanically removes the e¤ects of intraday patterns.
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3.2 Realized variance and identi�cation of jumps

Volatility is said to be latent as it is not directly observable. Nevertheless, recent advances in the
theory of quadratic variation have demonstrated that it can be estimated in a robust manner.21

The realized variance on day t is de�ned as:

RVt =
MX
j=1

R2tj , (9)

where Rtj is the j-th intraday return on day t. In a given day, the number of intervals sums to
M . If this number tends to in�nity (M ! 1), i.e. if the sampling frequency is increased such
that the interval between two return observations become in�nitesimal, the realized variance
becomes asymptotically equivalent to the quadratic variation of the process:

RVt �!
M!1

QVt, (10)

where QVt is the quadratic variation of the process. Furthermore, if the underlying does not
exhibit any discontinuity, QVtwill be an unbiased estimator of the integrated variance, IVt:

IVt =

tZ
t�1

�2(s)ds. (11)

However, with jumps in the process, QVtwill equal the integrated variance plus the sum of
squared jumps, i.e.:

QVt =

tZ
t�1

�2(s)ds+

NtX
n=1

�2tn , (12)

where Nt is the number of jumps on a given day (Nt �M) and �tn is the size of the n-th jump.
In order to isolate the jump component from the quadratic variation, we need an estimator of
the integrated variance, which remains consistent even in the presence of jumps in the process.
Barndor¤-Nielsen & Shephard (2004) propose another measure, namely the bipower variation
(as opposed to the simple power or quadratic variation):

BVt = �
�2
1

MX
j=2

��Rtj�1�� ��Rtj �� , (13)

where �1 =
q

2
� = E(jZj) denotes the mean of the absolute value of standard normally distrib-

uted random variable Z.

21 See, e.g., Andersen et al. (2001b), Andersen et al. (2001a), Barndor¤-Nielsen & Shephard (2002), Andersen
et al. (2006b) and Bandi & Russell (2007).
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More generally,

�a =
2a=2�(1=2(a+ 1))

�(1=2)
� E(jZja), (14)

where � is the Gamma function. Barndor¤-Nielsen & Shephard (2004) further prove that:

BVt �!
M!1

IVt. (15)

The intuition behind this result is the following (Huang (2004)). A jump might occur either in
tj�1 or in tj but not in tj�1 and in tj . This is because the number of jumps in a given day
is �nite. Hence the probability to observe two successive jumps is zero when the number of
partitions goes to in�nity (i.e. when M ! 1). Jumps may still enter into the calculation of
the bipower variation through the cross-product

��Rtj�1�� ��Rtj ��; nevertheless, their contribution
to the BVt process also becomes negligible when M goes to in�nity. This is the case for two
reasons: (i) there is only a �nite number of jumps a day and (ii) the magnitude of the returns
from the continuous part of the process tends to zero when M goes to in�nity. Consequently, as
the number of partitions increases (M ! 1), the contribution of the jump component to BVt
vanishes. Moreover, when the sampling frequency is very high (i.e. when M ! 1), returns
from successive intervals become increasingly close to each other and, therefore, BVt consistently
estimates the integrated variance.

The result (15) implies that one can estimate either the part of the variance due to the continuous
volatility component or the part due to the jump component by considering BVt or by taking the
di¤erence between RVt and BVt.22 Obviously, this di¤erence, computed from empirical data,
can be negative. This is counter-intuitive as the variance has to be positive. Thus we set the
daily variance due to jumps JVt equal to max(0; RVt �BVt).23

Using the procedure described above, one invariably �nds that there are frequent but mostly
small or even negligible jumps in the return process. To test if a signi�cant jump occurred
during a given day we use the test statistics derived by Barndor¤-Nielsen & Shephard (2004),
Barndor¤-Nielsen & Shephard (2006) and Andersen et al. (2007). We adopt the logarithmic
test speci�cation of Huang & Tauchen (2005) and Andersen et al. (2006a):

Wt =
lnRVt � lnBVtq

1
M (�

�4
1 + 2��21 � 5)max(1; TPt

BV 2t
)
, (16)

and TPt is the realized quarticity, which can be estimated consistently using either a tri- (An-
dersen et al. (2007)) or a quadripower quarticity (Barndor¤-Nielsen & Shephard (2004)). We
focus on the tripower quarticity, which is estimated through the following formula:

22 It is possible to estimate the variance of the Brownian increments using multipower variations:

PVt = �
�2
p

MP
j=2=p

2=pQ
k=0

��Rtj�k ��p.
As long as the returns are raised to a power inferior to two (p < 2), PVt will be a consistent estimator of the
variance of the continuous part of the process (Barndor¤-Nielsen & Shephard (2004)).

23 Barndor¤-Nielsen & Shephard (2004) and Andersen et al. (2007) adopt the same adjustment.
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TPt =M�
�3
4=3

MX
j=3

��Rtj�2��4=3 ��Rtj�1��4=3 ��Rtj ��4=3 . (17)

Under the null of absence of jumps, the test statistics Wt from (16) is asymptotically standard
normally distributed.

4 Intraday volatility patterns

4.1 Intraday patterns for squared returns

The intraday volatility factors b�j have been estimated on the basis of equations (5) and (6). They
are reported in �gure 2. Full lines show the �t from the FFF regression model (8), which has
been speci�ed as follows. First, the original polynom has been broken into three subpolynoms
to account for di¤erent trading regimes, which correspond to (1) the morning; (2) the lunch
time and the �rst part of the afternoon (i.e. before US-opening); and (3) the rest of the day.
Second, two dummies have also been added to the regression model in order to account for the
�rst and the last interval of the trading day. The order of the polynomials has been set to �ve.
This ensures a satisfactory trade-o¤ between the smoothness of the �tted intraday patterns and
the risk of over�tting.24 As in Andersen & Bollerslev (1997b),we leave out the sinusoidal part
in (8).

Many news are released before the market opens. As a consequence, the �rst minutes are highly
nervous. The activity remains intense during the next few intervals and then begins to slightly
decrease. It typically reaches a low between 12:00 a.m. and 1:00 p.m. In Europe, the mid-
afternoon is usually rather nervous because of information releases from the USA. In particular,
news about the coming US-opening leads the intraday volatility to skyrocket between 2:30 p.m.
and approximately 2:45 p.m. After that, the market calms down for a short while. When the
closing time is approaching, investors trade again very intensively. This eventually brings the
intraday volatility to new highs.

The patterns we get for the di¤erent periods look very similar. The precision of the �tted patterns
obviously depends on the number of observation days in each period. It seems that intraday
volatility patterns are neither a¤ected by investor sentiments nor by market conditions. For
instance, period 2-B was strongly bearish (the index lost about 70% of its value), while period
3-A was extremely bullish (the index more than doubled during this period). Though the
patterns for these two periods remain very similar.

24 For instance, Andersen et al. (2001c) use a third order polynomial. Nevertheless, they use FX data, which
display much simpler and smoother U-shaped patterns. As a matter of comparison, we also run the regression
models with third order polynomials. Overall very similar shapes emerge but the ability of the model to �t
peaks in activity is severely weakened.
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Figure 2: Intraday patterns for squared returns. The di¤erent panels show the patterns
for each period of the sample.

4.2 Intraday patterns for implied volatility

As a matter of comparison, we check if the implied volatility might also display some kind of
intraday patterns. We consider each period separately and proceed as follows. For each day,
we estimate a midday implied volatility level, which is de�ned as the average implied volatility
observed between 12:00 a.m. and 1:00 p.m. This midday estimate is then used to standardize
the implied volatility levels in the other 5-minute intervals of the day. This standardization
allows to directly compare the implied volatility measured in the same interval in di¤erent days.
It thus permits to calculate for each period an average standardized implied volatility for each
5-minute interval.

Figure 3 displays the intraday patterns for implied volatility. The full line shows the �t from a
�fth order polynomial regression (without any dummy or break). The implied volatility tends
to decrease just after the opening. It then stabilizes during the second part of the morning
and �nally raises again during the whole afternoon. These patterns are clear-cut but remain
less pronounced than the ones we get for the squared returns: the highest point of the intraday
patterns is about 1% to 1:5% larger than the lowest one. Nevertheless this observation might
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have important implication for option pricing as it means that, everything else held constant,
the same option could well be cheaper when bought between 10:00 a.m. and 11:00 a.m. than in
the late afternoon. In particular if the option is OTM, the price di¤erence might be substantial.
Consider for instance a call option written on an index that currently quotes at 8; 500 points.
The interest rate amounts to 3:5% yearly. The option strikes at 9; 000 points and has a time-
to-maturity of 30 calendar days. The implied volatility level is of about 20% at 10:00 a.m.
According to the Black and Scholes formula [1973], the option price may increase by as much
as 14% after a 1% increase in implied volatility (i.e., from 20% to 20:2%).

In order to quantify the importance of this e¤ect from an economic viewpoint, we build a
trading strategy based on a strangle. This is an indirect way to invest in volatility. We purchase
simultaneously both an OTM call and an OTM put at 10:00 a.m. The position is closed at 4:00
p.m. This strategy has been implemented over the last �ve years of the sample. By the end of
2005, we achieve a raw return of about 0:62% per day. This number is much larger than the
average daily return of the DAX over the same period but it remains lower than the e¤ective
transaction costs on the EUREX; in particular, the bid-ask spread is typically larger than 1%
for OTM options.
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Figure 3: Intraday patterns for implied volatility. The di¤erent panels show the patterns
for each period of the sample.
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5 Price discontinuities

5.1 Number and importance of jumps

Table 2 reports descriptive statistics of jump occurrences. In order not to confuse a genuine jump
with a burst of activity, intraday patterns have been preliminary �ltered out from raw returns.
We follow Huang & Tauchen (2005) and consider primarily the 99% and 99:9% con�dence levels
to identify price discontinuities. As a matter of comparison, we also use the 99:99% level (Lahaye
et al. (2007)). Obviously the number of jumps decreases when we consider a higher con�dence
level. For instance, at the 99% and 99:9% con�dence levels, 346 and 81 jumps are identi�ed. At
the highest con�dence level, we can still identify 22 individual jumps and 20 jump days. These
results are in line with those of Lahaye et al. (2007).25 When the lowest con�dence level is
considered, there is quite a larger number of days in which more than one jump took place.

Period Signif. # jumps # days with jumps Max. Min. Mean Std.

99% 119 80 (5.96%) 0.87% -0.90% -0.0346% 0.3491%

1 99.9% 29 26 (1.94%) 0.87% -0.90% -0.0164% 0.4700%

99.99% 7 5 (0.37%) 0.43% -0.78% -0.1552% 0.4854%

99% 84 51 (6.70%) 1.16% -2.17% -0.1079% 0.5522%

2 99.9% 16 12 (1.58%) 0.45% -0.97% -0.3512% 0.4328%

99.99% 3 3 (0.39%) 0.36% -0.97% -0.3412% 0.6655%

99% 143 80 (11.20%) 0.86% -1.74% 0.0309% 0.3151%

3 99.9% 36 31 (4.34%) 0.86% -1.74% -0.0284% 0.4513%

99.99% 12 12 (1.68%) 0.63% -1.74% -0.2112% 0.6329%

Table 2: Descriptive statistics about jump occurrences. For each period and con�dence
level (�Signif.�. in the table), the number of jumps and the number of days with jumps are
reported. The two columns called �Max. SJ�and �Min. SJ�show the most positive and most
negative returns due to a single jump. The last two columns, �Mean� and �Std.� report the
mean and the standard deviation of all returns due to jumps.

On average, returns due to jumps are slightly negative and their standard deviations are large
(between 50% and 120% in annualized terms, depending on the period under consideration and
the signi�cance level). There are some striking di¤erences between the three periods. Notably,
there are more days with jumps in the last period than in the other two. The second period
was strongly bearish and highly volatile, while the last one was bullish and rather calm.26 This
di¤erence seems therefore to be counterintuitive. Nevertheless, in a high volatility environment,
relatively larger price changes are needed for the test statistics in (16) to become signi�cant.

25 Lahaye et al. (2007) study the number of jump occurences for the Dow Jones, the Nasdaq and the S&P
500. They use data sampled each 15 minutes and consider a 99:99% con�dence level. They �nd out that the
proportion of jump days for these indices was respectively 1:43%, 0:7% and 1:70%.

26 The average intradaily (i.e. without considering overnight returns) realized volatility was 15.22% in the �rst
period, 25.04% in the second, and 14.94% in the last.
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These results might indicate that the prices declined rather steadily during period two and that
only a few returns were driven by sudden price jumps. Moreover, rare jumps were on average
bigger during period two than during the other periods. When looking at the �Max.�and �Min.�
columns of Table 2, one may also notice that the amplitude of the largest jumps tend to decrease
when a higher con�dence level is considered. This means that the largest price changes are not
necessarily driven by jumps.

Table 3 shows the contribution of jumps to the overall daily variance. When considering all
days (i.e. also non-jump days), their contribution remains quite restrained. But if we focus only
on those days in which at least one jump takes place, the picture changes dramatically. In this
case, about 15% to 40% of the daily variance is due to jumps. On some �extreme�days, more
than 80% of the daily variance can be explained through jumps. It also seems that the impact
of jumps on daily variance was bigger in the �rst period than in the next two periods.

Period Signif. All days Jump days Min. Max.

99% 1.51% 25.38% 6.78% 79.47%

1 99.9% 0.61% 31.62% 12.66% 80.82%

99.99% 0.16% 42.24% 18.49% 71.34%

99% 1.13% 16.85% 4.89% 49.18%

2 99.9% 0.22% 13.75% 4.66% 25.85%

99.99% 0.06% 15.00% 10.82% 22.52%

99% 1.98% 17.70% 2.12% 50.00%

3 99.9% 0.69% 15.93% 4.61% 47.78%

99.99% 0.34% 20.31% 7.32% 49.11%

Table 3: Part of the daily realized variance due to jumps. For each period and con�dence
level (�Signif.� in the table), the average part of the daily variance that is due to jumps is
reported (column �All days�). The last three columns shows the average (�Jump days�), minimal
(�Min.�) and maximal (�Max.�) contribution of jumps to the daily variance for days in which
at least a jump takes place.

5.2 Timing of jumps

In this subsection, we �rst analyze whether jumps occur randomly throughout the trading day.
We then study the duration between two successive jumps.

Distribution of jumps throughout the trading day

We consider a typical trading day and study the probability for a jump to occur in each 5-minute
interval, from the opening to the closing of the market. In most of these intervals, only a handful
of jumps (or even no jump at all) have been identi�ed. We therefore aggregate them into broader
20-minute intervals in order to get a more precise picture of their distribution throughout the
day. We consider each 20-minute interval separately and calculate the proportion of days in



5.2 Timing of jumps 18

which a jump took place in that interval. The results are reported in �gure 4. We focus on the
99% (left panel of the �gure) and 99:9% (right panel) con�dence levels as not enough jumps
have been identi�ed at the highest con�dence level (99:99%) for conducting precise inferences.
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Figure 4: Distribution of jumps throughout the trading day. The numbers on the
ordinate indicate the probability for a jump to occur in a 20-minute interval. The left and right
panels are for the 99% and 99.9% con�dence level.

Jumps are found in almost every interval but they do not spread evenly around the clock.
Typically more jumps occur just after market opening, at about 2:30 p.m. and in the late
afternoon. The raw and �ltered series exhibit similar features. However, there are less jumps
in the �ltered series. This is because many large changes arise at particular moments of the
day, when the market gets nervous. Thus many of them can be explained through the intraday
patterns. This illustrates how crucial it is to �lter out intraday patterns from raw returns before
identifying jumps. All in one, these patterns are remarkably similar to the ones we get when
studying intraday market activity (see section 4.1).

Duration between two successive jumps

Table 4 shows the typical duration between two successive jumps for each period and each
con�dence level. In the �rst period and for the lowest con�dence level, there was, on average, a
jump each 15:79 (calendar) days. During the next two periods, jumps were more frequent and
the average duration decreased to 7:06 days in the third period.
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Period Signif. Mean Std. Min. Max.

99% 15.79 22.62 0.0035 104.97

1 99.9% 65.08 74.49 0.0208 349.90

99.99% 251.01 340.83 0.0208 916.95

99% 13.07 18.50 0.0035 90.88

2 99.9% 66.87 69.13 0.0243 210.87

99.99% 322.07 438.28 12.1597 631.98

99% 7.06 11.26 0.0035 63.01

3 99.9% 27.98 39.46 0.0069 196.68

99.99% 78.73 69.07 4.0174 253.67

Table 4: Duration between two successive jumps. This table shows the duration between
two jumps. For each con�dence level and period, the average duration as well as the standard
deviation, the minimum (Min.) and the maximum (Max.) of the duration are reported.

Figure 5 is complementary to this analysis as it shows the complete time-series of jumps for the
99% (upper panel in the �gure) and 99:9% (lower panel) con�dence levels. Sometimes there is
more than one jump on the same day. For the lower con�dence level, there are up to 12 jumps
a day. This result looks a bit excessive. Indeed if we consider the 99:9% con�dence level, the
maximum amount of jumps a day decreases to 4. Furthermore, jumps tend to cluster. This is
particularly striking when we focus on the 99:9% con�dence level.27
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Figure 5: Time-series of jumps. The y-axis reports the number of jump occurences on each
day. The upper and lower panels are for the 99% and 99.9% con�dence levels.

27 Andersen et al. (2007) analyze jump occurences for the S&P500 and �nd evidence of jumps clustering.
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6 Impact of a jump on volatility

6.1 Impact on absolute returns and implied volatility

We follow the approach of Bollerslev et al. (2006) to examine the nature of the relationship
between index returns and volatility. However, unlike Bollerslev et al. (2006), who use absolute
returns as a proxy for volatility, we focus on implied volatility.

We calculate the correlation coe¢ cient of DAX returns in a 5-minute interval j� with implied
volatility changes in 5-minute interval j� + k, where k 2 f�12; : : : ; 12g. We denote by j�

the interval in which a jump has occurred. As a matter of comparison, we also examine the
correlation between rS;tj� and the absolute return

���rS;tj�+k ���.28 The number of 12 leads and lags
corresponds to 1 hour around the time at which the jump occurred. In order to quantify the
additional impact of a jump on volatility, we also compute the correlation coe¢ cients for the
complete sample of returns (i.e. without making any distinction between jump and non-jump
intervals). There is only a limited number of jumps in our sample. This might limit our ability
to make precise inferences. Therefore, we make use of the complete 11 year sample and consider
only jumps that have been identi�ed at the 99% and 99.9% con�dence levels.

Figure 6 reports the correlation coe¢ cients between the di¤erent series. We �rst discuss the lead-
lag e¤ects among returns and absolute returns (left panel of the �gure). Correlation coe¢ cients
for k > 1 and k < 0 are rather erratic and mostly insigni�cant. Though, at least for k = 0

and k = 1 they are consistently negative (about �0:2 to �0:4 for the 99% and 99:9% con�dence
levels) and signi�cantly di¤erent from zero. By comparing these results with the ones we get
for the complete sample (upper panel), we see that a jump has a real impact on volatility.
Furthermore, this impact remains signi�cant in the next 5-minute interval.

The right panels of the �gure show the lead-e¤ects for the implied volatility returns. These
patterns are much clearer than those for the absolute returns. The correlation coe¢ cients are
signi�cantly di¤erent from zero even for k < 0. This means that lagged volatility returns
have a predictive power on future jump occurrences. We also �nd a signi�cant and highly
negative correlation of DAX returns with contemporaneous volatility returns (k = 0). At the
99% con�dence level, the correlation coe¢ cient is even more negative at k = 1 than at k = 0

and remains signi�cant up to k = 5. This shows that the impact of a jump on volatility is
important and also indicates that the market needs some time to fully incorporate the e¤ects
of the jump in the volatility process. At the 99:9% con�dence level, the retarded reaction is
even more pronounced as the correlation remains lower than �0:5 up to k = 2. If we compare
these �gures with the ones from the right upper panel, we see that the results mostly indicate
the same kind of causality, running from index returns to volatility. Though the patterns are
stronger in the case of jumps. This was expected because a large return caused by a jump should
have more economic content than an innovation, which is only slightly di¤erent from zero. It is
di¢ cult to interpret the few signi�cant correlations for k < 0. They seem to indicate that the
market has some ability to predict a jump and its sign. If it is the case, we would expect to �nd

28 This measure is closely related to the �skew�correlations of Engle & Lee (1993).
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a positive autocorrelation between the returns recorded before the jump occurred and the jump
return. We check this, but do not �nd any signi�cant relationship.
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Figure 6: Lead-lag e¤ects among DAX returns and absolute DAX returns (left
panel) / returns on implied volatility (right panel). The upper panels report the results
for the complete sample (i.e. without any distinction between jump and non-jump intervals),
while the lower panels report the results for the jump intervals, where jumps are identi�ed at the
99% and 99.9% con�dence levels. The dotted lines correspond to the lower and upper bounds
for a 95% con�dence interval for each coe¢ cient.

In order to gain further insight into this issue, we di¤erentiate lead-lag e¤ects for positive
and negative jumps. This distinction obviously reduces the number of observations we have.
Therefore we consider only jumps identi�ed at the 99% con�dence level and focus on a shorter
time horizon of 30 minutes (i.e. k 2 f�6; : : : ; 6g). The correlation coe¢ cients are reported
in �gure 7. The �gure provides some evidence in favor of an asymmetric relationship. On
the one hand, positive jumps do not seem to have much impact on volatility. On the other
hand, negative jumps have an important e¤ect on volatility. We also �nd some sort of volatility
feed-back, as the correlation coe¢ cients for k = �2 and k = �1 are signi�cant. However, the
causality remains mostly return-driven.29

29 We run another test in oder to see if a jump might have an impact not only on the implied volatility level
but also on the whole implied volatility smile structure. The results indicate that a jump does not have a
signi�cant e¤ect neither on the slope nor on the curvature of the smile function.
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Figure 7: Lead-lag e¤ects among positive (and negative, right panel) jump returns
and returns on implied volatility. The dotted lines correspond to the lower and upper
bounds for a 95% con�dence interval for each coe¢ cient.

6.2 Impact on realized volatility

In this section, we focus on the impact of a jump on the realized volatility. We �rst estimate
the realized variance before and after a jump occurred:

RVK;tj<t�j =
KX
k=1

r2t�j�k
and RVK;tj>t�j =

KX
k=1

r2t�j+k
,

where RVK;tj<t�j and RVK;tj>t�j are respectively the realized variance before and after a jump
took place. Both measures are estimated over a horizon of K 5-minute intervals. t�j is the time
at which a jump occurred. We consider various horizons, ranging from 5 minutes (K = 1) to 1
hour (K = 12). In order to render these measures more tractable, we reexpress them in terms
of annualized volatility, i.e. Rv =

p
252 � (100=K) �RV (as we have on average 100 5-minute

intervals per day).

We then study the impact of a jump on the realized volatility over an horizon of K periods by
taking the di¤erence between RvK;tj>t�j and RvK;tj<t�j . We di¤erentiate between positive and
negative jumps and get the following expressions:

�Rv+K = RvK;tj>t�j+
�RvK;tj<t�

j+
and �Rv�K = RvK;tj>t�j� �RvK;tj<t�j� ,

where �Rv+K and �Rv�K respectively quantify the impact of a positive and a negative jump on
realized volatility, t�j+ (t

�
j�) is the time at which a positive (negative) jump has occurred.

Figure 8 shows that the realized volatility tends to increase after a negative jump has occurred.
On an annualized basis, the increase amounts to about 49% for jumps identi�ed at the 99%
con�dence level. The impact of the jumps identi�ed at the 99:9% con�dence level is even stronger
(up to 62% increase in the realized volatility). However, this result is no longer signi�cant at the
95% level. This could be due to the scarcity of signi�cant jump observations. Positive jumps do
not have a similar impact on the realized volatility. The most signi�cant positive jumps seem to
trigger a decrease in the realized volatility, while less signi�cant jumps seem to have an opposite
impact on the realized volatility. Yet, in both cases, the results are far from being signi�cant at
the standard levels.
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Figure 8: Impact of a jump on realized volatility over a horizon of K periods. The
left (right) panel reports the results for positive (negative) jumps. The dotted lines show the
upper and lower 95% con�dence bounds.

7 Conclusion

In this paper, we examine three related empirical questions. First, we characterize the intraday
patterns for both squared returns and implied volatilities. Second, we identify price discontinu-
ities and study their statistical properties. Third, we analyze the impact of a price jump on the
subsequent volatility level.

Our results indicate that intraday patterns for squared returns are typicallyW�shaped and have
remained very stable over the sample period (1995-2005). The intraday volatility is particularly
high at the market�s opening, at 2:30 p.m. and at the closing. We also observe very clear-cut
J�shaped patterns for implied volatility. These are more moderate than those for squared
returns but, as indicated by a small empirical experiment (see section 4.2), their economic
implications could be potentially important.

We identify some rare jumps. They occur on 0:37% and 11:20% of all days, depending on the
period under consideration and the con�dence level used to test their signi�cance. The impact
of jumps on the daily volatility is far from being negligible. On jump days, price discontinuities
account on average for 15% to 25% of the daily return variance and, on some particular days,
they explain as much as up to 80% of the daily return variance. We also notice that jumps
tend to cluster. The length of our sample allows studying precisely the occurrences of jumps
throughout the trading day. We �nd that they are distributed according to patterns that are
very similar to the ones for squared returns. That is, there is a higher probability for a jump to
occur in the early morning, at 2:30 p.m. and in the late afternoon.
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Finally we �nd that price discontinuities have a considerable impact on volatility. A jump leads
to a direct adjustment of the implied volatility level. This adjustment is upward or downward
depending on whether the jump is negative or positive. Negative jumps have a much stronger
e¤ect on volatility than positive ones. The information conveyed by a jump needs some time to
be fully integrated in the volatility process. That is, the impact of a jump on volatility remains
signi�cant during up to 25 minutes. Moreover, the subsequent impact of a jump on volatility
tends to be even more important than its direct impact. We �nd almost similar results for
absolute returns and realized volatility but these results are less signi�cant. To sum up, we
document (i) a direct impact of a jump on volatility; (ii) a retarded (or causal) e¤ect of a jump
on subsequent volatilities; (iii) a notable asymmetry in the relationship among jump returns and
volatility changes.
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