Measuring value creation Shareholder point of view

• « r » : expected rate of return required by shareholders (comes from the market) :

 $r = R_f + Risk premium (CAPM)$

- « P_0 : present market value of share
- « Div₁. dividend served in year 1
- « H » : horizon

Note : in an efficient market, NPV=> 0

$$P_{0} < \sum_{t=1}^{H} \frac{Div_{1}}{(1+r)^{l}} + \dots + \frac{Div_{H}}{(1+r)^{H}} + \frac{P_{H}}{(1+r)^{H}} = +NPV$$
COFINE.COM
B. Jaquier
1

EXAMPLE

Shareholder point of view

		Forcast			
	Year 0	Year 1	Year 2	Year 3	Year 4
Dividend		0.50	0.60	1.15	1.24
Value of share	?				120.00
Total Revenues		0.50	0.60	1.15	121.24
Expected Return	10%				

$$P_0 = \frac{0.50}{1.10^1} + \frac{0.60}{1.10^2} + \frac{1.15}{1.10^3} + \frac{121.24}{1.10^4} = 84.62$$

If Market P₀ = 80.0, NPV = 4.62 & Return (IRR) = 11.57 % In an efficient market, Investors will buy this stock because Return > Expected Return → ↑ price to 84.62 and Return = Expected Return

Other example

Shareholder point of view

- R_s: Shareholder return (Rs) $R_s = \frac{Div_1 + (P_1 P_0)}{P_0}$
- r : Required return to equity : $r = R_f + P$ (comes from the market) (CAPM)
 - R_f : Return of Long term Treasury Bonds
 - P : Risk Premium

```
      If Rs > r => Value creation

      But

      (C) ECOFINE.COM
      In an efficient/market, r = Rs
```

Efficient Market

	Year 0	Year 1
Price	?	110.0
Dividend		5.0
Expected Return	15 %	

 $\bullet P_0 = (110 + 5) / 1.15 = 100.0$

How do you know that 100 \$ is the right price ?

Because no other price could survive in competitive capital market

If Po = 105 R = (110 - 105 + 5)/105 = 9,52 % instead of 15 % r<r comparable securities → Shareholders sell their stocks → \Downarrow price to 100 \$ If PO = 95 R = (110 - 95 + 5)/95 = 21.05 % instead of 15 % r > r comparable securities → Investors buy stocks → ↑ price to 100 \$

Measuring value

Shareholder point of view

Increase of Equity market value (EMV)

- P_1 : next year share price
 - The stock price is a reflection of the expectations of future cash flow generation
- P_0 : present value of share
- N: number of shares
- (P₁.N) = market value of equity at year 1
- (P₀.N) = present market value of equity

$$(P_1.N) - (P_0.N) = EMV$$

Measuring EMV

Shareholder point of view

	Year _o	Year ₁
Market value of LT Debt	1100	1050
Market value of Equity	2024	2244
Market value of the firm	3124	3294

 $Year_1$: Increase of EMV = 2244 - 2024 = 220

B. Jaquier

MVA (Market Value Added)

Firm point of view

	Year 0	Year 1
Net fixed Asset (book value)	2605	2700
MVA	519	594
Market value of asset	3124	3294
Market value of LT Debt	1100	1050
Market value of Equity	2024	2244
Market value of financing	3124	3294
Increase in MVA		75

Value creation = Market value of equity + Market Value of LT Debt - Net fixed Asset at book value

(C) ECOFINE.COM

B. Jaquier

Measuring value creation for the firm & shareholders

$$NPV = -FCF_0 + \frac{FCF_1}{(1 + WACC)^1} + \frac{FCF_2}{(1 + WACC)^2} + \dots + \frac{FCF_n}{(1 + WACC)^n}$$

-FCF ₀	financial resources allocation (investments in tangible & non tangible assets)
FCF ₁	free cash flow year 1, and so one
WACC	Weighted Average Cost of Capital
NPV	(PV of FCF) – Financial ressource allocation = NPV

WACC

(Weighted Average Cost of Capital)

- Rf : Risk Free Rate (e.g. T-Bonds, Government bonds)
- β : Beta measures the risk of a single share (calculated or given by analysts)
- R_m : Market Return (e.g. SMI, CAC40, S&P500)
- K_d: Cost of Debt
- T : Tax Rate
- D : LT Debt at market value
- E : Equity at market value
- D / V :proportion of Debt
- E / V :proportion of Equity

$$WACC = [R_f + \beta(R_m - R_f)] \cdot \frac{E}{V} + K_d \cdot (1 - T) \cdot \frac{D}{E}$$

CAPM (Capital Asset Pricing Model)

$$CAPM = r = [R_f + \beta(R_m - R_f)]$$

It models the risk expected and expected return trade-off in the capital market for Shareholders

- **Rf** : Risk free rate (e.g. T-Bonds, Government bonds)
- β : Beta measures the risk of a single share (calculated or given by analysts)
- **R**_m: Market return (e.g. SMI, CAC40, S&P500)

Free Cash Flows (FCF)

FCF is the cash available for shareholders & Long-term Debtholders

EBIT (Earning Before Interest & Tax)
+ Depreciation
- Tax
- Capex (capital expenditure)
+/- change in WCR (Working capital
Requirement)
FCF

Example

Market informations		
Rf	3%	
Rm	12%	
Bêta	0.80	
%Debt	60%	
%Equity	40%	
Kd	4%	
Tax	25%	

WACC = [3% + 0.80.(12% - 3%).40%] + [(4%.(100% - 25%).60%] = 5.88%

Value is created for shareholders when :

Management decides to :

- Increase returns for existing assets
- Make incremental investments with rates of return above the cost of capital (IRR > WACC => + NPV)
- Divest assets that do not return their cost of capital
- Return cash to investors in the form of dividends when profitable investments are not available

– Etc

Measuring value creation for shareholders

Myths

- Growth of occupancy necessarely creates value !
 - No ! Growth of occupancy without generation of economic profit destroys value
- Growth of REVPAR creates value !
 - No ! Growth of REVPAR without generation of economic profit destroys value
- Growth of (Sales / Seat) creates value !
 - No ! Growth of (Sales / Seat) without generation of economic profit destroys value
- And so on.....

IRR (Internal Rate of Return)

$$FCF_{0} = \frac{FCF_{1}}{(1 + IRR)^{1}} + \frac{FCF_{2}}{(1 + IRR)} \dots \frac{FCF_{n}}{(1 + IRR)^{n}}$$

The IRR is a *profitability measure* which depends solely on the amount and timing of the projects FCF

IRR > WACC => value creation IRR < WACC => value destroyed

Example

	Year 0	Year 1	Year 2	Year 3	Year 4
FCF	-180.00	50.00	60.00	70.00	80.00

WACC 10.00

NPV	22.27
IRR	15.16%

$$-1800 + \frac{500}{(1 + IRR)^{1}} + \frac{600}{(1 + IRR^{2})} + \frac{700}{(1 + IRR^{3})} + \frac{8000}{(1 + IRR^{4})} = 0$$

IRR > WACC => Value creation (NPV) = **22.27**

EVA (Economic Value Added)

EVA = [ROA - WACC] . ECONOMIC ASSET

- ROA : Return on economic Asset
 V= D+E
- Wacc: Weighted Average Cost of Capital (minimum rate of return required)

EVA : accounting approach

Market Value of Net Asset: Market Value of Debt: Market Value of Equity : Tax rate 1'000 600 Cost of Debt : 5 % 400 Required Return : 12 % 30 %

Calculation of EVA :

•	EBIT (Earning before interest & Tax)	100
•	- Interest rate 5 % sur 600	30
•	EBT (Earning Before Tax)	70
•	- Tax 30 %	21
•	EAT (Earning After Tax)	49
•	- Dividend : 12 % on 400	48
	EVA	1

EVA : other approach

(ROA – WACC) x Economic Asset = EVA

- ROA = (EBIT Tax)/Asset = (100 30)/1000 = 7 %
- WACC = [12%.0,40] + [5%.(0,60).(1 T)] = 6,9%

- EVA = 0.1% of 1000 = **1**

$$EVA = \left[\frac{EBIT - Tax}{Asset}.100\right] - \left[K_e \cdot \frac{E}{V} + \left(K_d \cdot (1 - T) \cdot \frac{D}{E}\right)\right]$$

$$EVA = \left[\frac{100 \cdot (1 - 0.30)}{1000}\right] - \left[12\% \cdot 0.40 + 5\% \cdot (1 - 0.30) \cdot 0.60\right] \cdot 1000 = 1$$

(C) ECOFINE.COM

B. Jaquier

Company valuation

Based on price earnings (P/E) ratio

- Equity value = PER . PAT (profit after tax)
- Company value = Equity value + LT Debt (Method available for quoted & non quoted company)

Based on market capitalization :

- Equity value = P . N
- Company value = Equity value + LT Debt

Company valuation (example)

EPS (Earning per Share)	2.36
PER (Price earning ratio)	24.87
PAT (Profit after Tax) (million)	501
N (Number of share) (million)	212.4
P (Price of share)	58.70
Market Value of LT Debt	4'500

Based on price earnings (P/E) ratio

Market Value of Equity (MVE) = PAT x PER = 501 x 24.87 = **12'460** Market Value of the Company = MVE + LT Debt = **16'960**

Based on market capitalization

Market Value of Equity (MVE) = P x N = 58.70 x 212.4 = **12'468** Market Value of the Company = MVE + LT Debt = **16'968** (C) ECOFINE.COM

Company (or a new business) valuation (DCF method)

$$Value_{n=0} = \frac{FCF_{1}}{(1 + WACC)^{1}} + \dots + \frac{FCF_{n}}{(1 + WACC)^{n}} + \frac{TV_{n}}{(1 + WACC)^{n}}$$

$$TV_{n} = \frac{FCF_{n+1}}{(WACC - g)} = (growing \cdot perpetuity)$$

$$TV_n = \frac{FCF_{n+1}}{WACC} = (cons \tan t \cdot perpetuity)$$

TV (Terminal value) :what you think the business will be worth at the end of the period "n"

Company (or a new business) valuation (DCF method) : example

WACC:10 %	Year 1	Year 2	Year 3	Year 4 (constant perpetuity)
FCF	100	120	130	130
TV			1'300	
Total FCF	100	120	1'430	

$$TV_{Year3} = \frac{1'30}{0.10} = 1'300$$

$$Value_{n=0} = \frac{100}{(1.10)^{1}} + \frac{120}{(1.10)^{2}} + \frac{1'430}{(1.10)^{3}} = 1'264$$